cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A220436 a(n) = A127546(n)^2.

Original entry on oeis.org

4, 36, 196, 1444, 9604, 66564, 454276, 3118756, 21362884, 146458404, 1003749124, 6880038916, 47155859716, 323212716324, 2215328606404, 15184099435684, 104073336269956, 713329336067076, 4889231802533764, 33511293841053604, 229689823620354244, 1574317475335503396, 10790532493690424836
Offset: 0

Views

Author

N. J. A. Sloane, Dec 16 2012

Keywords

References

  • Giacomo Candido, A Relationship Between the Fourth Powers of the Terms of the Fibonacci Series, Scripta Mathematica, Vol. 17, No. 3-4 (1951), p. 230.
  • Shalosh B. Ekhad and Doron Zeilberger, Automatic Counting of Tilings of Skinny Plane Regions, in: Simon R. Blackburn, Stefanie Gerke and Mark Wildon, eds., Surveys in Combinatorics 2013, Cambridge University Press, 2013, pp. 363-378.

Crossrefs

Programs

  • Mathematica
    Table[Total[Fibonacci[Range[n, n + 2]]^2]^2, {n, 0, 22}] (* or *)
    Table[4 (4 ((-1)^(n + 1) LucasL[2 (n + 1)] + LucasL[4 (n + 1)]) + 9)/25, {n, 0, 22}] (* Michael De Vlieger, Feb 18 2017 *)

Formula

Empirical g.f.: -4*(x^4-4*x^3-11*x^2+4*x+1) / ((x-1)*(x^2-7*x+1)*(x^2+3*x+1)). - Colin Barker, Jul 22 2013
a(n) = 4*(4*((-1)^(n + 1)*Lucas(2*(n + 1)) + Lucas(4*(n + 1))) + 9)/25. - Ehren Metcalfe, Feb 18 2017
a(n) = 2 * (F(n)^4 + F(n+1)^4 + F(n+2)^4), where F(n) is the n-th Fibonacci number (A000045) (Candido, 1951). - Amiram Eldar, Jan 11 2022