cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A220449 Define u(n) as in A220448; then a(1)=1, thereafter a(n) = u(n)*a(n-1).

Original entry on oeis.org

1, 1, -10, 10, 190, -730, -6620, 55900, 365300, -5864300, -28269800, 839594600, 2691559000, -159300557000, -238131478000, 38894192662000, -15194495654000, -11911522255750000, 29697351895900000, 4477959179352100000, -21683886333440500000, -2029107997508660900000, 15145164178973569000000
Offset: 1

Views

Author

N. J. A. Sloane, Dec 22 2012

Keywords

Comments

The reason for including this sequence as well as A105750 is that the values of this sequence modulo various primes are of interest (see Moll).

Crossrefs

Programs

  • Maple
    x:=proc(n) option remember;
    if n=1 then 1 else (x(n-1)+n)/(1-n*x(n-1)); fi; end;
    f:=proc(n) option remember; global x;
    if n = 1 then 1 else n*x(n-1)*f(n-1)-f(n-1); fi; end;
    [seq(f(n),n=1..30)];

Formula

A105750(n) = (-1)^(n+1)*a(n).
Define x(n) as in A220447. Then x(n) = (a(n+1)+a(n))/((n+1)*a(n)).

A220448 Define a sequence u(n) by u(1)=1; thereafter u(n) = f(n)/f(n-1) where f(n) = (-1)^(n+1)*A105750(n); sequence gives numerator(u(n)).

Original entry on oeis.org

1, 1, -10, -1, 19, -73, 662, -2795, 281, -4511, 21746, -322921, 1035215, -720817, 1077518, -87995911, -34376687, 929280875, -92673902, 6986985769, -33833494045, 243540693677, -1817775985570, 13097400661955, -27199287430171, 8249498995171439, -112427012362483262, 3008079144099400625, -10365435567354511181
Offset: 1

Views

Author

N. J. A. Sloane, Dec 22 2012

Keywords

Comments

Also u(n) = n*x(n-1)-1, where x(n) is defined in A220447.

Examples

			The sequence u(n) begins 1, 1, -10, -1, 19, -73/19, 662/73, -2795/331, 281/43, -4511/281, 21746/4511, ...
		

Crossrefs

Denominator(u(n)) = A220447(n-1).

Programs

  • Maple
    A220448 := proc(n)
        if n= 1 then
            1 ;
        else
            -A105750(n)/A105750(n-1) ;
            numer(%) ;
        end if;
    end proc: # R. J. Mathar, Jan 04 2013
  • Mathematica
    x[n_] := x[n] = If[n == 1, 1, (x[n-1] + n)/(1 - n*x[n-1])];
    u[n_] := If[n == 1, 1, n*x[n-1] - 1];
    a[n_] := Numerator[u[n]];
    Table[a[n], {n, 1, 29}] (* Jean-François Alcover, Aug 09 2023 *)

A180657 Numerator of the fraction tan( Sum_{k=1..n} arctan(k) ).

Original entry on oeis.org

1, -3, 0, 4, -9, 105, -308, 36, -423, 2387, -26004, 104472, -50617, 119889, -5466072, 3154072, 51692571, -2921193, 351666136, -1278405156, 11188330461, -68445012691, 553299094188, -4915961459556
Offset: 1

Views

Author

R. J. Mathar, Jan 21 2011

Keywords

Examples

			The fractions are x(1)=1, x(2)=-3, x(3)=0, x(4)=4, x(5)=-9/19, x(6)=105/73 etc.
		

Crossrefs

For denominators see A220447.

Programs

  • Maple
    A := proc(n) local x,itr; x := 1 ; for itr from 2 to n do x := (x+itr)/(1-itr*x) ; end do; numer(x) ; end proc:
    seq(A(n),n=1..30) ;
  • Mathematica
    x[1] := 1; x[n_] := (x[n - 1] + n)/(1 - n * x[n - 1]); Table[Numerator[x[n]], {n,10}] (* Alonso del Arte, Jan 21 2011 *)
    (* Just for verification: *)
    x[n_] := Tan[Sum[ArcTan[k], {k, n}]] // TrigExpand;
    Table[x[n] // Numerator, {n, 24}] (* Jean-François Alcover, Mar 29 2020 *)

Formula

Let x(1)=1 and x(n) = (x(n-1)+n)/(1-n*x(n-1)). Then a(n) = numerator(x(n)).
Showing 1-3 of 3 results.