cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A220452 Number of unordered full binary trees with labels from a set of n labels.

Original entry on oeis.org

1, 3, 9, 37, 225, 1881, 19873, 251889, 3712257, 62286625, 1171487361, 24402416193, 557542291969, 13861636770177, 372514645389825, 10759590258589441, 332386419622387713, 10935312198369141249, 381705328034883127297, 14089260601787531469825, 548302210950105933701121
Offset: 1

Views

Author

Felix A. Pahl, Dec 15 2012

Keywords

Comments

a(n) is the size of the population generated by n unrelated ancestors if two individuals produce one descendant together if and only if they are not related.

Examples

			For n=3, each of the three pairs of ancestors produces one descendant, and each of these descendants produces one more descendant with the respective remaining ancestor; three ancestors, three first-order descendants and three second-order descendants makes a population of a(3)=9.
		

Crossrefs

Cf. A001147.
Partial sums of A084262.

Programs

  • Java
    import java.math.BigInteger;
    public class A220452 {
        public static void main (String [] args) {
            int max = Integer.parseInt (args [0]);
            BigInteger [] doubleFactorials = new BigInteger [max + 1];
            BigInteger [] [] binomialCoefficients = new BigInteger [max + 1] [max + 1];
            doubleFactorials [0] = BigInteger.ONE;
            for (int n = 1;n <= max;n++) {
                binomialCoefficients [n] [0] = BigInteger.ONE;
                BigInteger sum = BigInteger.ZERO;
                for (int k = 1;k <= n;k++) {
                    binomialCoefficients [n] [k] = k == n ? BigInteger.ONE : binomialCoefficients [n - 1] [k - 1].add (binomialCoefficients [n - 1] [k]);
                    sum = sum.add (binomialCoefficients [n] [k].multiply (doubleFactorials [k - 1]));
                }
                System.out.println (n + " " + sum);
                doubleFactorials [n] = doubleFactorials [n - 1].multiply (BigInteger.valueOf (2 * n - 1));
            }
        }
    }
  • Mathematica
    Table[Sum[Binomial[n,k]*(2*k-3)!!, {k, 1, n}], {n, 1, 20}] (* Vaclav Kotesovec, Dec 17 2012 *)

Formula

a(n) = Sum_{k=1..n} binomial(n,k)*(2k-3)!!.
a(n) ~ (2n-3)!!*sqrt(e) ~ (2n)!/(n!*2^n*(2n-1))*sqrt(e) ~ n^(n-1)*2^(n-1/2)*exp(1/2-n). - Vaclav Kotesovec, Dec 17 2012