cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A220463 Chebyshev numbers C_v(n) for v=1.2: a(n) is the smallest number such that if x>=a(n), then theta(x)-theta(5*x/6)>=n*log(x), where theta(x)=sum_{prime p<=x}log p.

This page as a plain text file.
%I A220463 #30 Dec 04 2016 19:46:30
%S A220463 59,137,139,149,223,241,347,353,383,389,563,569,593,613,631,641,821,
%T A220463 823,853,929,937,1009,1013,1061,1069,1277,1279,1361,1427,1433,1481,
%U A220463 1487,1597,1601,1607,1609,1613,1973,1979,1997,2011,2081,2083,2113,2203,2269,2273,2297
%N A220463 Chebyshev numbers C_v(n) for v=1.2: a(n) is the smallest number such that if x>=a(n), then theta(x)-theta(5*x/6)>=n*log(x), where theta(x)=sum_{prime p<=x}log p.
%C A220463 All terms are primes.
%C A220463 Up to a(98)=5381, all terms are 1.2-Ramanujan numbers as in Shevelev's link; up to 5381, the only missing 1.2-Ramanujan numbers are 29 and 5171.
%H A220463 N. Amersi, O. Beckwith, S. J. Miller, R. Ronan, J. Sondow, <a href="http://arxiv.org/abs/1108.0475">Generalized Ramanujan primes</a>, arXiv 2011.
%H A220463 N. Amersi, O. Beckwith, S. J. Miller, R. Ronan, J. Sondow, <a href="http://link.springer.com/chapter/10.1007/978-1-4939-1601-6_1">Generalized Ramanujan primes</a>, Combinatorial and Additive Number Theory, Springer Proc. in Math. & Stat., CANT 2011 and 2012, Vol. 101 (2014), 1-13
%H A220463 V. Shevelev, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL15/Shevelev/shevelev19.html">Ramanujan and Labos primes, their generalizations, and classifications of primes</a>, J. Integer Seq. 15 (2012) Article 12.5.4
%H A220463 Vladimir Shevelev, Charles R. Greathouse IV, Peter J. C. Moses, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL16/Moses/moses1.html">On intervals (kn, (k+1)n) containing a prime for all n>1</a>, Journal of Integer Sequences, Vol. 16 (2013), Article 13.7.3. <a href="http://arxiv.org/abs/1212.2785">arXiv:1212.2785</a>
%F A220463 a(n)<=prime(11*(n+1)).
%t A220463 k=5; xs=Table[{m,Ceiling[x/.FindRoot[(x (-1300+Log[x]^4))/Log[x]^5==(k+1) m,{x,f[(k+1) m]-1},AccuracyGoal->Infinity,PrecisionGoal->20,WorkingPrecision->100]]},{m,1,101}]; Table[{m,1+NestWhile[#-1&,xs[[m]][[2]],(1/Log[#1]Plus@@Log[Select[Range[Floor[(k #1)/(k+1)]+1,#1],PrimeQ]]&)[#]>m&]},{m,1,100}] (* _Peter J. C. Moses_, Dec 20 2012 *)
%Y A220463 Cf. A220293, 220462.
%K A220463 nonn
%O A220463 1,1
%A A220463 _Vladimir Shevelev_, Charles R Greathouse IV and Peter J. C. Moses, Dec 15 2012