A220464 Reverse reluctant sequence of reluctant sequence A002260.
1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 3, 2, 1, 2, 1, 1, 1, 3, 2, 1, 2, 1, 1, 2, 1, 3, 2, 1, 2, 1, 1, 3, 2, 1, 3, 2, 1, 2, 1, 1, 4, 3, 2, 1, 3, 2, 1, 2, 1, 1, 1, 4, 3, 2, 1, 3, 2, 1, 2, 1, 1, 2, 1, 4, 3, 2, 1, 3, 2, 1, 2, 1, 1, 3, 2, 1, 4, 3, 2, 1, 3, 2, 1, 2, 1, 1, 4, 3, 2, 1, 4, 3, 2, 1, 3, 2, 1, 2, 1, 1, 5, 4, 3, 2, 1, 4, 3, 2, 1, 3, 2, 1, 2, 1, 1, 1, 5, 4, 3
Offset: 1
Examples
The start of the sequence as triangle array T(n,k) is: 1; 1,1; 2,1,1; 1,2,1,1; 2,1,2,1,1; 3,2,1,2,1,1; ...
Links
- Boris Putievskiy, Rows n = 1..140 of triangle, flattened
- Boris Putievskiy, Transformations Integer Sequences And Pairing Functions, arXiv:1212.2732 [math.CO], 2012.
Programs
-
Python
t=int((math.sqrt(8*n-7) - 1)/ 2) n1=(t*t+3*t+4)/2-n t1=int((math.sqrt(8*n1-7) - 1)/ 2) m=n1-t1*(t1+1)/2
Formula
T(n,k) = A002260(n-k+1).
As a linear array, the sequence is a(n) = n1-t1*(t1+1)/2, where n1=(t*t+3*t+4)/2-n, t1=floor[(-1+sqrt(8*n1-7))/2], t=floor[(-1+sqrt(8*n-7))/2].
Comments