A220465 Reverse reluctant sequence of reverse reluctant sequence A004736.
1, 2, 1, 1, 2, 1, 3, 1, 2, 1, 2, 3, 1, 2, 1, 1, 2, 3, 1, 2, 1, 4, 1, 2, 3, 1, 2, 1, 3, 4, 1, 2, 3, 1, 2, 1, 2, 3, 4, 1, 2, 3, 1, 2, 1, 1, 2, 3, 4, 1, 2, 3, 1, 2, 1, 5, 1, 2, 3, 4, 1, 2, 3, 1, 2, 1, 4, 5, 1, 2, 3, 4, 1, 2, 3, 1, 2, 1, 3, 4, 5, 1, 2, 3, 4, 1, 2, 3, 1, 2, 1, 2, 3, 4, 5, 1, 2, 3, 4, 1, 2, 3, 1, 2, 1, 1, 2, 3, 4, 5, 1, 2, 3, 4, 1, 2, 3, 1, 2, 1, 6, 1, 2, 3
Offset: 1
Examples
The start of the sequence as triangle array T(n,k) is: 1; 2,1; 1,2,1; 3,1,2,1; 2,3,1,2,1; 1,2,3,1,2,1; ...
Links
- Boris Putievskiy, Rows n = 1..140 of triangle, flattened
- Boris Putievskiy, Transformations Integer Sequences And Pairing Functions, arXiv:1212.2732 [math.CO], 2012.
Programs
-
Python
t=int((math.sqrt(8*n-7) - 1)/ 2) n1=(t*t+3*t+4)/2-n t1=int((math.sqrt(8*n1-7) - 1)/ 2) m=(t1*t1+3*t1+4)/2-n1
Formula
T(n,k) = A004736(n-k+1).
As a linear array, the sequence is a(n) = (t1*t1+3*t1+4)/2-n1, where n1=(t*t+3*t+4)/2-n, t1=floor[(-1+sqrt(8*n1-7))/2], t=floor[(-1+sqrt(8*n-7))/2].
Comments