cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A220479 Total number of smallest parts that are also emergent parts in all partitions of n.

This page as a plain text file.
%I A220479 #23 Jun 05 2021 16:33:44
%S A220479 0,0,0,1,0,3,1,5,5,10,8,22,19,33,40,62,67,107,118,175,208,282,331,462,
%T A220479 542,712,859,1112,1323,1709,2030,2568,3078,3830,4577,5687,6760,8291,
%U A220479 9885,12045,14290,17334,20515,24710,29242,35004,41282,49283,57963,68836
%N A220479 Total number of smallest parts that are also emergent parts in all partitions of n.
%C A220479 For the definition of emergent parts see A182699.
%H A220479 Vaclav Kotesovec, <a href="/A220479/b220479.txt">Table of n, a(n) for n = 1..1000</a>
%F A220479 a(n) = A092269(n) - A000070(n-1) - A002865(n) = A092269(n) - A120452(n+1) = A195820(n) - A002865(n).
%F A220479 a(n) = A092269(n) - A000041(n) - A000070(n-2), n >= 2.
%F A220479 a(n) = A215513(n) - A000070(n-2), n >= 2.
%F A220479 a(n) ~ exp(Pi*sqrt(2*n/3)) / (8*sqrt(3)*n). - _Vaclav Kotesovec_, Jul 31 2017
%t A220479 b[n_, i_] := b[n, i] = If[n==0 || i==1, n, {q, r} = QuotientRemainder[n, i]; If[r==0, q, 0] + Sum[b[n-i*j, i-1], {j, 0, n/i}]];
%t A220479 c[n_] := b[n, n];
%t A220479 d[n_] := Total[PartitionsP[Range[0, n-3]]] + PartitionsP[n-1];
%t A220479 a[n_] := c[n] - d[n+1];
%t A220479 Array[a, 50] (* _Jean-François Alcover_, Jun 05 2021, using _Alois P. Heinz_'s code for A092269 *)
%Y A220479 Cf. A000041, A000070, A002865, A006128, A092269, A120452, A182699, A182709, A195820, A206437, A215513.
%K A220479 nonn
%O A220479 1,6
%A A220479 _Omar E. Pol_, Jan 12 2013
%E A220479 a(43) corrected by _Vaclav Kotesovec_, Jul 31 2017