cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A220483 Total number of smallest parts that are also emergent parts in all partitions of n with at least one distinct part: a(n) = n + d(n) + p(n-1) + spt(n) - A000070(n) - sigma(n) - 1.

This page as a plain text file.
%I A220483 #17 Jun 05 2021 16:33:51
%S A220483 0,0,0,0,0,0,1,1,3,5,8,11,19,26,34,51,67,91,118,158,200,271,331,433,
%T A220483 538,699,849,1089,1323,1674,2030,2542,3066,3813,4567,5640,6760,8272,
%U A220483 9871,12002,14290,17287,20515,24675,29214,34981,41282,49216,57957,68798
%N A220483 Total number of smallest parts that are also emergent parts in all partitions of n with at least one distinct part: a(n) = n + d(n) + p(n-1) + spt(n) - A000070(n) - sigma(n) - 1.
%C A220483 For the definition of "emergent part" see A182699, A182709.
%F A220483 a(n) = n + A000005(n) + A000041(n-1) + A092269(n) - A000070(n) - A000203(n) - 1.
%t A220483 b[n_, i_] := b[n, i] = If[n==0 || i==1, n, {q, r} = QuotientRemainder[n, i]; If[r == 0, q, 0] + Sum[b[n - i*j, i - 1], {j, 0, n/i}]];
%t A220483 a[n_] := n + DivisorSigma[0, n] + PartitionsP[n - 1] + b[n, n] -
%t A220483   Total[PartitionsP[Range[0, n]]] - DivisorSigma[1, n] - 1;
%t A220483 Array[a, 50] (* _Jean-François Alcover_, Jun 05 2021, using _Alois P. Heinz_'s code for A092269 *)
%Y A220483 Cf. A000005, A000041, A000070, A000203, A002865, A092269, A182699, A182709, A183152, A193827, A195820, A206437, A215513, A220479, A220489.
%K A220483 nonn
%O A220483 1,9
%A A220483 _Omar E. Pol_, Jan 16 2013
%E A220483 a(49) corrected by _Jean-François Alcover_, Jun 05 2021