This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A220484 #17 Dec 13 2015 01:11:22 %S A220484 1,2,1,3,1,1,4,2,1,2,1,5,3,2,1,1,1,1,6,4,3,2,2,1,1,3,1,2,1,7,5,4,3,3, %T A220484 2,2,1,1,1,1,2,1,1,1,8,6,5,4,4,3,3,2,2,2,2,1,1,1,1,4,2,1,1,1,2,1,9,7, %U A220484 6,5,5,4,4,3,3,3,3,2,2,2,2,1,1,1,1,1,1,1,3,2,1,1,3,1,1,1 %N A220484 Triangle read by rows: T(j,k) is the total number of appearances of the smallest parts in the j-th partition of n, with partitions as nonincreasing lists of parts in lexicographic order. %C A220484 The sum of row n equals spt(n) = A092269(n), the smallest part partition function. %e A220484 For n = 5: %e A220484 ------------------------------------------ %e A220484 . number of %e A220484 Partitions of 5 smallest parts %e A220484 ------------------------------------------ %e A220484 1 + 1 + 1 + 1 + 1 5 %e A220484 2 + 1 + 1 + 1 3 %e A220484 3 + 1 + 1 2 %e A220484 2 + 2 + 1 1 %e A220484 4 + 1 1 %e A220484 3 + 2 1 %e A220484 5 1 %e A220484 ------------------------------------------ %e A220484 So row 5 is [5, 3, 2, 1, 1, 1, 1]. The sum of row 5 is 5+3+2+1+1+1+1 = spt(5) = A092269(n) = 14. %e A220484 . %e A220484 Written as an irregular triangle begins: %e A220484 1; %e A220484 2,1; %e A220484 3,1,1; %e A220484 4,2,1,2,1; %e A220484 5,3,2,1,1,1,1; %e A220484 6,4,3,2,2,1,1,3,1,2,1; %e A220484 7,5,4,3,3,2,2,1,1,1,1,2,1,1,1; %e A220484 8,6,5,4,4,3,3,2,2,2,2,1,1,1,1,4,2,1,1,1,2,1; %e A220484 9,7,6,5,5,4,4,3,3,3,3,2,2,2,2,1,1,1,1,1,1,1,3,2,1,1,3,1,1,1; %Y A220484 Column 1 is A000027. Row n has length A000041(n). Row sums give A092269. %Y A220484 Cf. A209514, A220504. %K A220484 nonn,tabf %O A220484 1,2 %A A220484 _Omar E. Pol_, Jan 20 2013