cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A220486 a(n) = n(p(n)-d(n)): sum of all of parts of all partitions of n with at least one distinct part.

This page as a plain text file.
%I A220486 #13 Feb 21 2013 15:35:36
%S A220486 0,0,3,8,25,42,91,144,243,380,594,852,1287,1834,2580,3616,5015,6822,
%T A220486 9272,12420,16548,21956,28819,37608,48875,63232,81162,103936,132327,
%U A220486 167880,212040,266976,334587,418404,520765,646848,800495,988418,1216059,1493200
%N A220486 a(n) = n(p(n)-d(n)): sum of all of parts of all partitions of n with at least one distinct part.
%F A220486 a(n) = n*(A000041(n) - A000005(n)) = A066186(n) - A038040(n) =  n*A144300(n).
%e A220486 For n = 6
%e A220486 -----------------------------------------------------
%e A220486 Partitions of 6            Value
%e A220486 -----------------------------------------------------
%e A220486 6 .......................... 0  (all parts are equal)
%e A220486 5 + 1 ...................... 6
%e A220486 4 + 2 ...................... 6
%e A220486 4 + 1 + 1 .................. 6
%e A220486 3 + 3 ...................... 0  (all parts are equal)
%e A220486 3 + 2 + 1 .................. 6
%e A220486 3 + 1 + 1 + 1 .............. 6
%e A220486 2 + 2 + 2 .................. 0  (all parts are equal)
%e A220486 2 + 2 + 1 + 1 .............. 6
%e A220486 2 + 1 + 1 + 1 + 1 .......... 6
%e A220486 1 + 1 + 1 + 1 + 1 + 1 ...... 0  (all parts are equal)
%e A220486 -----------------------------------------------------
%e A220486 The sum of the values is    42
%e A220486 On the other hand p(6) = A000041(6) = 11 and d(6) = A000005(6) = 4, so a(6) = 6*(p(6) - d(6)) = 6*(11 - 4) = 6*7 = 42.
%Y A220486 Cf. A000005, A000041, A038040, A066186, A144300, A220477.
%K A220486 nonn,easy
%O A220486 1,3
%A A220486 _Omar E. Pol_, Jan 18 2013