A220492 Number of primes p between quarter-squares, Q(n) < p <= Q(n+1), where Q(n) = A002620(n).
0, 0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 2, 2, 2, 2, 1, 4, 1, 2, 2, 2, 3, 3, 2, 2, 2, 4, 2, 4, 3, 1, 4, 2, 4, 3, 3, 3, 4, 4, 3, 4, 3, 2, 4, 4, 5, 4, 4, 4, 3, 4, 4, 4, 5, 4, 4, 4, 4, 5, 5, 5, 4, 6, 4, 4, 5, 5, 5, 7, 2, 3, 6, 6, 6, 6, 5, 8, 4, 5, 6, 5, 4, 7
Offset: 0
Keywords
Examples
When the nonnegative integers are written as an irregular triangle in which the right border gives the quarter-squares without repetitions, a(n) is the number of primes in the n-th row of triangle. See below (note that the prime numbers are in parenthesis): --------------------------------------- Triangle a(n) --------------------------------------- 0; 0 1; 0 (2); 1 (3), 4; 1 (5), 6; 1 (7), 8, 9; 1 10, (11), 12; 1 (13), 14, 15, 16; 1 (17), 18, (19), 20; 2 21, 22, (23), 24, 25; 1 26, 27, 28, (29), 30; 1 ...
Links
- Ruud H.G. van Tol, Table of n, a(n) for n = 0..10000
- Wikipedia, Oppermann's conjecture
Crossrefs
Programs
-
PARI
a(n) = #primes([n^2/4, (n+1)^2/4]); \\ Ruud H.G. van Tol, Feb 01 2024
Comments