This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A220505 #28 Aug 16 2020 10:21:27 %S A220505 2,16,88,364,1309,4126,11992,32368,82590,200487,467152,1049224, %T A220505 2283364,4829302,9959035,20069790,39612612,76703340,145945332, %U A220505 273224940,503888206,916373028,1644925432,2916814954,5113148026,8866911378,15220453704 %N A220505 a(n) = spt(5n+4)/5 where spt(n) = A092269(n). %C A220505 That spt(5n+4) == 0 (mod 5) is one of the congruences stated by George E. Andrews. See theorem 2 in the Andrews' paper. See also A220507 and A220513. %H A220505 G. E. Andrews, <a href="http://www.math.psu.edu/vstein/alg/antheory/preprint/andrews/17.pdf">The number of smallest parts in the partitions of n</a> %H A220505 G. E. Andrews, F. G. Garvan, and J. Liang, <a href="http://www.math.psu.edu/andrews/pdf/287.pdf">Combinatorial interpretation of congruences for the spt-function</a> %H A220505 K. C. Garrett, C. McEachern, T. Frederick, O. Hall-Holt, <a href="http://www.deepdyve.com/lp/elsevier/fast-computation-of-andrews-smallest-part-statistic-and-conjectured-pV0SFgLi27/1">Fast computation of Andrews' smallest part statistic and conjectured congruences</a>, Discrete Applied Mathematics, 159 (2011), 1377-1380. %H A220505 F. G. Garvan, <a href="https://qseries.org/fgarvan/papers/spt.pdf">Congruences for Andrews' smallest parts partition function and new congruences for Dyson's rank</a> %H A220505 F. G. Garvan, <a href="https://qseries.org/fgarvan/papers/spt2.pdf">Congruences for Andrews' spt-function modulo powers of 5, 7 and 13</a> %H A220505 F. G. Garvan, <a href="http://arxiv.org/abs/1011.1957">Congruences for Andrews' spt-function modulo 32760 and extension of Atkin's Hecke-type partition congruences</a>, arXiv:1011.1957 [math.NT], 2010. %H A220505 K. Ono, <a href="http://www.mathcs.emory.edu/~ono/publications-cv/pdfs/131.pdf">Congruences for the Andrews spt-function</a> %F A220505 a(n) = A092269(A016897(n))/5 = A220485(n)/5. %t A220505 b[n_, i_] := b[n, i] = If[n==0 || i==1, n, {q, r} = QuotientRemainder[n, i]; If[r == 0, q, 0] + Sum[b[n - i j, i - 1], {j, 0, n/i}]]; %t A220505 spt[n_] := b[n, n]; %t A220505 a[n_] := spt[5n+4]/5; %t A220505 Table[a[n], {n, 0, 26}] (* _Jean-François Alcover_, Jan 30 2019, after _Alois P. Heinz_ in A092269 *) %Y A220505 Cf. A016897, A071734, A092269, A220485, A220507, A220513. %K A220505 nonn %O A220505 0,1 %A A220505 _Omar E. Pol_, Jan 18 2013