cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A220508 T(n,k) = n^2 + k if k <= n, otherwise T(n,k) = k*(k + 2) - n; square array T(n,k) read by ascending antidiagonals (n >= 0, k >= 0).

This page as a plain text file.
%I A220508 #45 Mar 10 2021 08:52:45
%S A220508 0,1,3,4,2,8,9,5,7,15,16,10,6,14,24,25,17,11,13,23,35,36,26,18,12,22,
%T A220508 34,48,49,37,27,19,21,33,47,63,64,50,38,28,20,32,46,62,80,81,65,51,39,
%U A220508 29,31,45,61,79,99,100,82,66,52,40,30,44,60,78,98,120
%N A220508 T(n,k) = n^2 + k if k <= n, otherwise T(n,k) = k*(k + 2) - n; square array T(n,k) read by ascending antidiagonals (n >= 0, k >= 0).
%C A220508 This sequence consists of 0 together with a permutation of the natural numbers. The nonnegative integers (A001477) are arranged in the successive layers from T(0,0) = 0. The n-th layer start with T(n,1) = n^2. The n-th layer is formed by the first n+1 elements of row n and the first n elements in increasing order of the column n.
%C A220508 The first antidiagonal is formed by odd numbers: 1, 3. The second antidiagonal is formed by even numbers: 4, 2, 8. The third antidiagonal is formed by odd numbers: 9, 5, 7, 15. And so on.
%C A220508 It appears that in the n-th layer there is at least a prime number <= g and also there is at least a prime number > g, where g is the number on the main diagonal, the n-th oblong number A002378(n), if n >= 1.
%H A220508 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a>
%F A220508 From _Petros Hadjicostas_, Mar 10 2021: (Start)
%F A220508 T(n,k) = (A342354(n,k) - 1)/2.
%F A220508 O.g.f.: (x^4*y^3 + 3*x^3*y^4 + x^4*y^2 - 10*x^3*y^3 - x^2*y^4 + 3*x^3*y^2 + x^2*y^3 - 4*x^3*y + 8*x^2*y^2 + 3*x^2*y + x*y^2 + x^2 - 10*x*y - y^2 + x + 3*y)/((1 - x)^3*(1 - y)^3*(1 - x*y)^2). (End)
%e A220508 The second layer is [4, 5, 6, 7, 8] which looks like this:
%e A220508   .  .  8
%e A220508   .  .  7,
%e A220508   4, 5, 6,
%e A220508 Square array T(0,0)..T(10,10) begins:
%e A220508     0,   3,   8,  15,  24,  35,  48,  63,  80,  99, 120,...
%e A220508     1,   2,   7,  14,  23,  34,  47,  62,  79,  98, 119,...
%e A220508     4,   5,   6,  13,  22,  33,  46,  61,  78,  97, 118,...
%e A220508     9,  10,  11,  12,  21,  32,  45,  60,  77,  96, 117,...
%e A220508    16,  17,  18,  19,  20,  31,  44,  59,  76,  95, 118,...
%e A220508    25,  26,  27,  28,  29,  30,  43,  58,  75,  94, 117,...
%e A220508    36,  37,  38,  39,  40,  41,  42,  57,  74,  93, 114,...
%e A220508    49,  50,  51,  52,  53,  54,  55,  56,  73,  92, 113,...
%e A220508    64,  65,  66,  67,  68,  69,  70,  71,  72,  91, 112,...
%e A220508    81,  82,  83,  84,  85,  86,  87,  88,  89,  90, 111,...
%e A220508   100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110,...
%e A220508   ...
%Y A220508 Column 1 is A000290. Main diagonal is A002378. Column 2 is essentially A002522. Row 1 is A005563. Row 2 gives the absolute terms of A008865.
%Y A220508 Cf. A000005, A000040, A002061, A002620, A014206, A014209, A027688, A028387, A028552, A060736, A220516.
%K A220508 nonn,tabl
%O A220508 0,3
%A A220508 _Omar E. Pol_, Feb 09 2013
%E A220508 Name edited by _Petros Hadjicostas_, Mar 10 2021