cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A220509 n^3 + 3n + 3^n.

This page as a plain text file.
%I A220509 #19 Sep 08 2022 08:46:04
%S A220509 1,7,23,63,157,383,963,2551,7097,20439,60079,178511,533205,1596559,
%T A220509 4785755,14352327,43050865,129145127,387426375,1162268383,3486792461,
%U A220509 10460362527,31381070323,94143191063,282429550377,847288625143,2541865845983,7625597504751
%N A220509 n^3 + 3n + 3^n.
%C A220509 This is to A220425 as 3 is to 2.
%C A220509 The subsequence of primes begins: 7, 23, 157, 383, 2551, see A220701 for the associated n.
%H A220509 Vincenzo Librandi, <a href="/A220509/b220509.txt">Table of n, a(n) for n = 0..1000</a>
%F A220509 a(n) = n^3 + 3*n + 3^n = A000578(n) + A008585(n) + A000244(n).
%F A220509 G.f.: (1 - 8*x^2 + 6*x^3 - 11*x^4)/((1-x)^4*(1-3*x)). - _Vincenzo Librandi_, Dec 18 2012
%e A220509 a(1) = 1^3 + 3*1 + 3^1 = 7.
%e A220509 a(2) = 2^3 + 3*2 + 3^2 = 23.
%t A220509 Table[n^3 + 3*n + 3^n, {n, 0, 30}] (* _T. D. Noe_, Dec 17 2012 *)
%t A220509 CoefficientList[Series[(1 - 8*x^2 + 6*x^3 - 11*x^4)/((1-x)^4*(1-3x)), {x, 0, 40}], x] (* _Vincenzo Librandi_, Dec 18 2012 *)
%o A220509 (Maxima) A220509(n):=n^3+3*n+3^n$ makelist(A220509(n),n,0,20); /* _Martin Ettl_, Dec 17 2012 */
%o A220509 (Magma) [n^3 + 3*n + 3^n: n in [0..30]]; // _Vincenzo Librandi_, Dec 18 2012
%Y A220509 Cf. A000244, A000578, A008585, A220425, A220701.
%K A220509 nonn,easy
%O A220509 0,2
%A A220509 _Jonathan Vos Post_, Dec 15 2012