cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A220515 Numbers n such that A183054(n) is not equal to A188569(n).

This page as a plain text file.
%I A220515 #26 Mar 20 2013 12:28:47
%S A220515 24,47,49,74,96,99,116,124,145,149,162,174,194,199,224,237,243,249,
%T A220515 274,277,292,299,324,331,341,346,349,358,374,390,399,424,439,449,474,
%U A220515 479,488,499,500,507,524,537,549,566,574,586,599,600,624,635
%N A220515 Numbers n such that A183054(n) is not equal to A188569(n).
%C A220515 For an algorithm to compute the partition class polynomial Hpart_n(x) see the Bruinier-Ono-Sutherland paper, 3.3. Algorithm 3, p. 15-19. For more information see A222031.
%H A220515 J. H. Bruinier, K. Ono, A. V. Sutherland, <a href="http://arxiv.org/abs/1301.5672">Class polynomials for nonholomorphic modular functions</a>
%H A220515 A. V. Sutherland, <a href="http://math.mit.edu/~drew/Pfiles/">Partition class polynomials</a>, Hpart_n(x), for n = 1..770
%e A220515 First three terms are 24, 47, 49 because first 50 terms of A183054 coincide with first 50 terms of A188569 except for the indices 24, 47, 49 as shown below:
%e A220515 (A183054(24) = 3) < (A188569(24) = 21).
%e A220515 (A183054(47) = 3) < (A188569(47) = 27).
%e A220515 (A183054(49) = 5) < (A188569(49) = 35).
%e A220515 Observation:
%e A220515 A183054(24) = A188569(24)/7 = 3.
%e A220515 A183054(47) = A188569(47)/9 = 3.
%e A220515 A183054(49) = A188569(49)/7 = 5.
%Y A220515 Cf. A000041, A183010, A183011, A183054, A188569, A222031, A222032.
%K A220515 nonn
%O A220515 1,1
%A A220515 _Omar E. Pol_, Feb 27 2013
%E A220515 a(4)-a(50) from _Giovanni Resta_, Mar 04 2013