This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A220517 #29 Nov 04 2013 18:06:27 %S A220517 1,1,2,2,3,3,2,1,4,5,3,1,5,7,2,1,4,2,3,1,6,11,3,1,5,2,4,1,7,15,2,1,4, %T A220517 2,3,1,6,4,5,1,4,1,8,22,3,1,5,2,4,1,7,4,3,1,6,2,5,1,9,30,2,1,4,2,3,1, %U A220517 6,4,5,1,4,1,8,7,4,1,7,2,6,1,5,1,10,42 %N A220517 First differences of A225600. Also A141285 and A194446 interleaved. %C A220517 Number of toothpicks added at n-th stage to the toothpick structure (related to integer partitions) of A225600. %H A220517 Omar E. Pol, <a href="http://www.polprimos.com/imagenespub/polpa408.jpg">Visualization of regions in a minimalist diagram for A006128</a> %H A220517 N. J. A. Sloane, <a href="/wiki/Catalog_of_Toothpick_and_CA_Sequences_in_OEIS">Catalog of Toothpick and Cellular Automata Sequences in the OEIS</a> %H A220517 <a href="/index/To#toothpick">Index entries for sequences related to toothpick sequences</a> %F A220517 a(2n-1) = A141285(n); a(2n) = A194446(n), n >= 1 %e A220517 Written as an irregular triangle in which row n has length 2*A187219(n) we can see that the right border gives A000041 and the previous term of the last term in row n is n. %e A220517 1,1; %e A220517 2,2; %e A220517 3,3; %e A220517 2,1,4,5; %e A220517 3,1,5,7; %e A220517 2,1,4,2,3,1,6,11; %e A220517 3,1,5,2,4,1,7,15; %e A220517 2,1,4,2,3,1,6,4,5,1,4,1,8,22; %e A220517 3,1,5,2,4,1,7,4,3,1,6,2,5,1,9,30; %e A220517 2,1,4,2,3,1,6,4,5,1,4,1,8,7,4,1,7,2,6,1,5,1,10,42; %e A220517 . %e A220517 Illustration of the first seven rows of triangle as a minimalist diagram of regions of the set of partitions of 7: %e A220517 . _ _ _ _ _ _ _ %e A220517 . 15 _ _ _ _ | %e A220517 . _ _ _ _|_ | %e A220517 . _ _ _ | | %e A220517 . _ _ _|_ _|_ | %e A220517 . 11 _ _ _ | | %e A220517 . _ _ _|_ | | %e A220517 . _ _ | | | %e A220517 . _ _|_ _|_ | | %e A220517 . 7 _ _ _ | | | %e A220517 . _ _ _|_ | | | %e A220517 . 5 _ _ | | | | %e A220517 . _ _|_ | | | | %e A220517 . 3 _ _ | | | | | %e A220517 . 2 _ | | | | | | %e A220517 . 1 | | | | | | | %e A220517 . %e A220517 . 1 2 3 4 5 6 7 %e A220517 . %e A220517 Also using the elements of this diagram we can draw a Dyck path in which the n-th odd-indexed segment has A141285(n) up-steps and the n-th even-indexed segment has A194446(n) down-steps. Note that the height of the n-th largest peak between two valleys at height 0 is also the partition number A000041(n). See below: %e A220517 . %e A220517 7.................................. %e A220517 . /\ %e A220517 5.................... / \ /\ %e A220517 . /\ / \ /\ / %e A220517 3.......... / \ / \ / \/ %e A220517 2..... /\ / \ /\/ \ / %e A220517 1.. /\ / \ /\/ \ / \ /\/ %e A220517 0 /\/ \/ \/ \/ \/ %e A220517 . 0,2, 6, 12, 24, 40... = A211978 %e A220517 . 1, 4, 9, 19, 33... = A179862 %e A220517 . %Y A220517 Cf. A000041, A006128, A135010, A138137, A141285, A179862, A186114, A186412, A187219, A194446, A206437, A211978, A220517, A225600, A225610. %K A220517 nonn,tabf %O A220517 1,3 %A A220517 _Omar E. Pol_, Feb 07 2013