cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A220566 Number of ways to reciprocally link elements of an 5Xn array either to themselves or to exactly one horizontal or antidiagonal neighbor.

This page as a plain text file.
%I A220566 #6 Jul 23 2025 01:13:50
%S A220566 1,89,1332,36640,810778,19333688,449429440,10536960271,246344047375,
%T A220566 5764617097479,134855487893714,3155067573838299,73813420827751321,
%U A220566 1726896241431387347,40401344327635974032,945204561717125804080
%N A220566 Number of ways to reciprocally link elements of an 5Xn array either to themselves or to exactly one horizontal or antidiagonal neighbor.
%C A220566 Row 5 of A220562
%H A220566 R. H. Hardin, <a href="/A220566/b220566.txt">Table of n, a(n) for n = 1..210</a>
%F A220566 Empirical: a(n) = 8*a(n-1) +332*a(n-2) +1166*a(n-3) -10416*a(n-4) -41922*a(n-5) +174048*a(n-6) +535206*a(n-7) -1872086*a(n-8) -2804534*a(n-9) +11470692*a(n-10) +3617576*a(n-11) -32706416*a(n-12) +4049368*a(n-13) +51508932*a(n-14) -14992866*a(n-15) -49988407*a(n-16) +16438786*a(n-17) +31549556*a(n-18) -9212528*a(n-19) -13108544*a(n-20) +2853616*a(n-21) +3512372*a(n-22) -487178*a(n-23) -584214*a(n-24) +44610*a(n-25) +58000*a(n-26) -2006*a(n-27) -3248*a(n-28) +34*a(n-29) +92*a(n-30) -a(n-32)
%e A220566 Some solutions for n=3 0=self 3=ne 4=w 6=e 7=sw (reciprocal directions total 10)
%e A220566 ..0..0..0....6..4..0....6..4..7....0..0..0....0..6..4....6..4..0....0..0..7
%e A220566 ..0..0..0....0..0..0....0..3..0....0..6..4....6..4..7....6..4..0....0..3..0
%e A220566 ..0..0..7....6..4..0....0..0..0....0..0..0....0..3..0....0..0..0....0..0..7
%e A220566 ..0..3..0....6..4..0....6..4..7....6..4..0....0..0..0....0..7..0....0..3..0
%e A220566 ..0..0..0....6..4..0....0..3..0....6..4..0....0..0..0....3..0..0....0..6..4
%K A220566 nonn
%O A220566 1,2
%A A220566 _R. H. Hardin_ Dec 16 2012