cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A220567 Number of ways to reciprocally link elements of an 6Xn array either to themselves or to exactly one horizontal or antidiagonal neighbor.

This page as a plain text file.
%I A220567 #6 Jul 23 2025 01:13:58
%S A220567 1,233,6076,338581,14298089,665748170,29955561052,1363847439227,
%T A220567 61845935792336,2808292682072854,127461441592952329,
%U A220567 5786012622635830257,262638882187378528534,11921898805633926722093,541164958214032363841199
%N A220567 Number of ways to reciprocally link elements of an 6Xn array either to themselves or to exactly one horizontal or antidiagonal neighbor.
%C A220567 Row 6 of A220562
%H A220567 R. H. Hardin, <a href="/A220567/b220567.txt">Table of n, a(n) for n = 1..210</a>
%F A220567 Empirical: a(n) = 13*a(n-1) +1348*a(n-2) +10654*a(n-3) -198504*a(n-4) -1906076*a(n-5) +16144268*a(n-6) +135853346*a(n-7) -925177576*a(n-8) -4891188529*a(n-9) +35999318281*a(n-10) +81980396412*a(n-11) -848296316904*a(n-12) -276758340388*a(n-13) +11227641980488*a(n-14) -7107958733596*a(n-15) -92787258095632*a(n-16) +107881224287236*a(n-17) +525583351897147*a(n-18) -774675289613655*a(n-19) -2182902615756840*a(n-20) +3555500220788694*a(n-21) +6973910104740084*a(n-22) -11426713159097796*a(n-23) -17667940720548336*a(n-24) +26747813225197794*a(n-25) +35945989169311476*a(n-26) -46394604844529149*a(n-27) -58560503957694547*a(n-28) +59946651607436776*a(n-29) +75473026016657552*a(n-30) -57619701988418728*a(n-31) -75893814357642448*a(n-32) +40983675195728936*a(n-33) +58931290214948032*a(n-34) -21385512054198856*a(n-35) -35152757210761395*a(n-36) +8057875480743783*a(n-37) +16091164614749124*a(n-38) -2117225467318182*a(n-39) -5658108579422624*a(n-40) +352030436802844*a(n-41) +1530178310024236*a(n-42) -22441127837162*a(n-43) -318296736753680*a(n-44) -5136539584403*a(n-45) +50823610079499*a(n-46) +1734560714908*a(n-47) -6199297816488*a(n-48) -263242733620*a(n-49) +572842763656*a(n-50) +25065179764*a(n-51) -39590221744*a(n-52) -1591760572*a(n-53) +2008410297*a(n-54) +67587747*a(n-55) -72760800*a(n-56) -1863630*a(n-57) +1806100*a(n-58) +31300*a(n-59) -28744*a(n-60) -282*a(n-61) +260*a(n-62) +a(n-63) -a(n-64)
%e A220567 Some solutions for n=3 0=self 3=ne 4=w 6=e 7=sw (reciprocal directions total 10)
%e A220567 ..0..7..7....0..0..0....6..4..7....0..7..0....0..7..0....0..0..0....0..6..4
%e A220567 ..3..3..0....6..4..0....0..3..0....3..6..4....3..7..0....6..4..0....6..4..7
%e A220567 ..6..4..0....0..6..4....0..6..4....6..4..0....3..0..0....0..0..0....0..3..0
%e A220567 ..0..0..0....6..4..7....6..4..0....0..7..0....0..7..0....0..0..0....0..0..7
%e A220567 ..0..7..0....0..3..0....0..6..4....3..7..0....3..7..7....0..0..7....0..3..0
%e A220567 ..3..0..0....0..6..4....0..6..4....3..6..4....3..3..0....0..3..0....6..4..0
%K A220567 nonn
%O A220567 1,2
%A A220567 _R. H. Hardin_ Dec 16 2012