cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A220603 First inverse function (numbers of rows) for pairing function A081344.

This page as a plain text file.
%I A220603 #40 Mar 23 2025 23:33:56
%S A220603 1,2,2,1,1,2,3,3,3,4,4,4,4,3,2,1,1,2,3,4,5,5,5,5,5,6,6,6,6,6,6,5,4,3,
%T A220603 2,1,1,2,3,4,5,6,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,7,6,5,4,3,2,1,1,2,3,4,
%U A220603 5,6,7,8,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,9,8,7,6,5,4,3,2,1
%N A220603 First inverse function (numbers of rows) for pairing function A081344.
%H A220603 Boris Putievskiy, <a href="/A220603/b220603.txt">Rows n = 1..140 of triangle, flattened</a>
%H A220603 Boris Putievskiy, <a href="http://arxiv.org/abs/1212.2732">Transformations Integer Sequences And Pairing Functions</a>, arXiv:1212.2732 [math.CO], 2012.
%F A220603 As a linear array, the sequence is a(n) = mod(t;2)*min{t; n - (t - 1)^2} + mod(t + 1; 2)*min{t; t^2 - n + 1}, where t=floor[sqrt(n-1)]+1.
%e A220603 The start of the sequence as triangle array T(n,k) read by rows, row number k contains 2k-1 numbers:
%e A220603   1;
%e A220603   2,2,1;
%e A220603   1,2,3,3,3;
%e A220603   4,4,4,4,3,2,1;
%e A220603   ...
%e A220603 If k is odd the row is 1,2,...,k,k...k (k times repetition "k" at the end of row).
%e A220603 If k is even the row is k,k,...k,k-1,k-2,...1 (k times repetition "k" at the start of row).
%t A220603 row[n_] := If[OddQ[n], Range[n-1]~Join~Table[n, {n}], Table[n, {n}]~Join~ Range[n-1, 1, -1]];
%t A220603 row /@ Range[10] // Flatten (* _Jean-François Alcover_, Nov 19 2019 *)
%o A220603 (Python)
%o A220603 t=int(math.sqrt(n-1))+1
%o A220603 i=(t % 2)*min(t,n-(t-1)**2) + ((t+1) % 2)*min(t,t**2-n+1)
%Y A220603 Cf. A081344.
%K A220603 nonn,tabf
%O A220603 1,2
%A A220603 _Boris Putievskiy_, Dec 16 2012