cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A220604 Second inverse function (numbers of columns) for pairing function A081344.

This page as a plain text file.
%I A220604 #26 Feb 15 2022 12:56:04
%S A220604 1,1,2,2,3,3,3,2,1,1,2,3,4,4,4,4,5,5,5,5,5,4,3,2,1,1,2,3,4,5,6,6,6,6,
%T A220604 6,6,7,7,7,7,7,7,7,6,5,4,3,2,1,1,2,3,4,5,6,7,8,8,8,8,8,8,8,8,9,9,9,9,
%U A220604 9,9,9,9,9,8,7,6,5,4,3,2,1,1,2,3,4,5,6,7,8,9,10,10,10,10,10,10,10,10,10,10
%N A220604 Second inverse function (numbers of columns) for pairing function A081344.
%H A220604 Boris Putievskiy, <a href="/A220604/b220604.txt">Rows n = 1..140 of triangle, flattened</a>
%H A220604 Boris Putievskiy, <a href="http://arxiv.org/abs/1212.2732">Transformations Integer Sequences And Pairing Functions</a>, arXiv:1212.2732 [math.CO], 2012.
%F A220604 As a linear array, the sequence is a(n) = mod(t;2)*min{t; t^2 - n + 1} + mod(t + 1; 2)*min{t; n - (t - 1)^2}, where t=floor[sqrt(n-1)]+1.
%e A220604 The start of the sequence as triangle array T(n,k) read by rows, row number k contains 2k-1 numbers:
%e A220604   1;
%e A220604   1,2,2;
%e A220604   3,3,3,2,1;
%e A220604   1,2,3,4,4,4,4;
%e A220604   ...
%e A220604 If k is even the row is 1,2,...,k,k...k (k times repetition "k" at the end of row).
%e A220604 If k is odd the row is k,k,...k,k-1,k-2,...1 (k times repetition "k" at the start of row).
%o A220604 (Python)
%o A220604 t=int(math.sqrt(n-1))+1
%o A220604 j=(t % 2)*min(t,t**2-n+1) + ((t+1) % 2)*min(t,n-(t-1)**2)
%Y A220604 Cf. A081344.
%K A220604 nonn,tabf
%O A220604 1,3
%A A220604 _Boris Putievskiy_, Dec 17 2012