This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A220627 #34 May 01 2021 07:36:41 %S A220627 2,3,5,11,17,19,23,29,37,41,47,53,59,61,67,71,79,83,89,97,101,103,107, %T A220627 109,113,131,137,139,149,151,163,167,173,179,181,191,193,197,199,223, %U A220627 227,229,233,239,251,257,263,269,271,277,281,283,293,311,313,317 %N A220627 Prime numbers that are not Brazilian. %C A220627 These are primes not in A085104 (Brazilian primes). %C A220627 Primes that are not repunit in any base b >= 2 with three or more digits. %H A220627 T. D. Noe, <a href="/A220627/b220627.txt">Table of n, a(n) for n = 1..1000</a> %H A220627 Bernard Schott, <a href="/A125134/a125134.pdf">Les nombres brésiliens</a>, Quadrature, no. 76, avril-juin 2010, pages 30-38; included here with permission from the editors of Quadrature. %t A220627 brazBases[n_] := Select[Range[2, n - 2], Length[Union[IntegerDigits[n, #]]] == 1 &]; Select[Range[2, 1000], PrimeQ[#] && brazBases[#] == {} &] (* _T. D. Noe_, Dec 26 2012 *) %o A220627 (Python) %o A220627 from sympy.ntheory.factor_ import digits %o A220627 from sympy import isprime, primerange %o A220627 def B(n): %o A220627 l=[] %o A220627 for b in range(2, n - 1): %o A220627 d=digits(n, b)[1:] %o A220627 if max(d)==min(d): l.append(n) %o A220627 return l %o A220627 print([n for n in primerange(2, 1001) if not B(n)]) # _Indranil Ghosh_, Jun 22 2017 %o A220627 (PARI) isok(p) = {if (isprime(p), for (b=2, p-1, my(d=digits(p, b), md=vecmin(d)); if ((#d > 2) && (md == 1) && (vecmax(d) == 1), return (0));); return (1););} \\ _Michel Marcus_, Apr 30 2021 %Y A220627 Cf. A085104. %K A220627 nonn,base %O A220627 1,1 %A A220627 _Bernard Schott_, Dec 17 2012