This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A220664 #34 Mar 31 2025 22:31:15 %S A220664 11,9,102,9,81,18,81,9,913,9,81,18,81,9,702,9,171,27,72,18,693,18,72, %T A220664 27,171,9,702,9,81,18,81,9,8024,9,81,18,81,9,702,9,171,27,72,18,693, %U A220664 18,72,27,171,9,702,9,81,18,81,9,5913,9,81,18,81,9,1602,9,261 %N A220664 First differences of A030299. %C A220664 From _M. F. Hasler_, Jan 12 2013: (Start) %C A220664 Note [updated Mar 03 2013]: The definition of sequence A030299 has been slightly modified in Jan. 2013, and as a consequence the following properties remain valid beyond the first A007489(9)-1 = 409112 terms, which had not been the case before, when A030299 had been defined through concatenation of the lexicographically ordered permutations, which in case of elements >= 10 broke up the nice mathematical properties (esp. of the sequence A219664 = 9*A217626 cited below). %C A220664 This sequence taken modulo 9 is zero except (possibly) at indices where a run of permutations ends in A030299. (These indices are given by A007489(n), n>0.) There it equals (mod 9) the "n" of the following run. E.g., a(1)=2 (mod 9), and A030299(1+1)=12 is the start of the run for n=2; a(3)=3 (mod 9) and A030299(3+1)=123 is the start of the run for n=3, a(9)=4 (mod 9) and A030299(9+1)=1234 is the start of the run for n=4, etc. %C A220664 The subsequence between these indices (A007489(n)+1,...,A007489(n+1)-1), always starts with the same terms, listed in A219664 = 9*A217626 (= A209280 = A107346 where the latter are defined). (End) %H A220664 Antti Karttunen, <a href="/A220664/b220664.txt">Table of n, a(n) for n = 1..5912</a> %F A220664 a(n) = A030299(n+1) - A030299(n). %F A220664 a(n) = A219664(n-A007489(k)), for A007489(k) < n < A007489(k+1). - _M. F. Hasler_, Jan 13 2013 %e A220664 A030299 starts (1, 12, 21, 123, 132, 213, 231, 312, ...), the first differences thereof yield (11, 9, 102, 9, 81, 18, 81, ...). %p A220664 (l-> seq(l[j]-l[j-1], j=2..nops(l)))([seq(map(x-> parse(cat(x[])), %p A220664 combinat[permute](n))[], n=0..5)])[]; # _Alois P. Heinz_, Nov 09 2021 %o A220664 (Scheme) (define (A220664 n) (- (A030299 (+ 1 n)) (A030299 n))) %o A220664 (PARI) {A030299=concat( vector( 5,k, vecsort( vector( (#k=vector(k, j, 10^j)~\10)!, i, numtoperm(#k, i-1)*k )))); A220664=vecextract(A030299,"^1")-vecextract(A030299,"^-1")} \\ _M. F. Hasler_, Jan 12 2013 %o A220664 (Python) %o A220664 from itertools import permutations %o A220664 def pmap(s, m): return sum(s[i-1]*10**(m-i) for i in range(1, len(s)+1)) %o A220664 def agen(): %o A220664 m = 1 %o A220664 while True: %o A220664 for s in permutations(range(1, m+1)): yield pmap(s, m) %o A220664 m += 1 %o A220664 def aupton(terms): %o A220664 alst, g = [], agen() %o A220664 t = next(g) %o A220664 while len(alst) < terms: %o A220664 t, prevt = next(g), t %o A220664 alst += [t - prevt] %o A220664 return alst %o A220664 print(aupton(65)) # _Michael S. Branicky_, Nov 09 2021 %Y A220664 The repeating part is given by A219664, equal to A107346 for indices < 5!. %K A220664 nonn,base %O A220664 1,1 %A A220664 _Antti Karttunen_, Dec 17 2012