A220666 Array of coefficients of powers of x^2 for S(2*n,x)^3 with Chebyshev's S polynomials A049310.
1, -1, 3, -3, 1, 1, -9, 30, -45, 30, -9, 1, -1, 18, -123, 399, -651, 588, -308, 93, -15, 1, 1, -30, 345, -1921, 5598, -9540, 10212, -7137, 3303, -1003, 192, -21, 1, -1, 45, -780, 6609, -29847, 80718, -141482, 168927, -141636, 84766, -36366, 11091, -2346, 327, -27, 1
Offset: 0
Examples
The array a(n,m) begins: n\m 0 1 2 3 4 5 6 7 8 9 0: 1 1: -1 3 -3 1 2: 1 -9 30 -45 30 -9 1 3: 1 18 -123 399 -651 588 -308 93 -15 1 ... Row n=4: [1, -30, 345, -1921, 5598, -9540, 10212, -7137, 3303, -1003, 192, -21, 1], Row n=5: [-1, 45, -780, 6609, -29847, 80718, -141482, 168927, -141636, 84766, -36366, 11091, -2346, 327, -27, 1], Row n=6: [1, -63, 1533, -18333, 118029, -460815, 1184872, -2118207, 2729922, -2598297, 1854177, -999687, 407472, -124680, 28164, -4553, 498, -33, 1]. Row n=2: S(4,x)^3 = 1 - 9*x^2 + 30*x^4 - 45*x^6 + 30*x^8 - 9*x^10 + 1*x^12.
Formula
a(n,m) = [x^m] S(2*n,x)^3, n>=0, 0 <= m <= 3*n.
a(n,m) = [x^m]([z^n]GS3even(x,z)) with GS3even(x,z) the o.g.f. for the row polynomials in powers of x^2, given in a comment above.
Comments