This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A220668 #10 Dec 10 2016 21:44:55 %S A220668 4,4,-4,1,4,-16,20,-8,1,4,-36,105,-112,54,-12,1,4,-64,336,-672,660, %T A220668 -352,104,-16,1,4,-100,825,-2640,4290,-4004,2275,-800,170,-20,1,4, %U A220668 -144,1716,-8008,19305,-27456,24752,-14688,5814,-1520,252,-24,1,4,-196,3185,-20384,68068,-136136,176358,-155040,94962,-40964,12397,-2576,350,-28,1 %N A220668 Coefficient array for the powers of x^2 of the square of the even-indexed Chebyshev C polynomials. %C A220668 The row lengths sequence of this irregular triangle is 2*n + 1 = A005408(n), n>=0. %C A220668 For the coefficient triangle for Chebyshev's C polynomials see A127672 (where they are called R polynomials). %C A220668 a(n,m) is the coefficient of (x^2)^m of C(2*n,x)^2. The o.g.f. for the row polynomials P(n,x) = sum(a(n,m)*x^m,m=0..2*n) is GC2even(x,z) := sum( P(n,x)*z^n,n=0..infinity) = %C A220668 (4 - (8 - 12*x + 3*x^2)*z + (x - 2)^2*z^2)/((1 - z)*(1 - ((x-2)^2 - 2)*z + z^2)). From the even part of the bisection of the o.g.f. for the square of the C polynomials. %F A220668 a(n,m) = [x^m] C(n,x)^2, n >= 0, 0 <= m <= 2*n, with Chebyshev's C polynomials (see A127672). %F A220668 a(n,m) =[x^m]([z]^n GC2even(x,z)), with the o.g.f. GC2even(x,z) given in a comment above. %e A220668 The array begins: %e A220668 n\m 0 1 2 3 4 5 6 7 8 9 10 %e A220668 0: 4 %e A220668 1: 4 -4 1 %e A220668 2: 4 -16 20 -8 1 %e A220668 3: 4 -36 105 -112 54 -12 1 %e A220668 4: 4 -64 336 -672 660 -352 104 -16 1 %e A220668 5: 4 -100 825 -2640 4290 -4004 2275 -800 170 -20 1 %e A220668 ... %e A220668 Row 6: [4, -144, 1716, -8008, 19305, -27456, 24752, -14688, 5814, -1520, 252, -24, 1], %e A220668 Row 7: [4, -196, 3185, -20384, 68068, -136136, 176358, -155040, 94962, -40964, 12397, -2576, 350, -28, 1]. %e A220668 Row n=2: C(2,x)^2 = (-2 + x^2)^2 = 4 - 4*x^2 + 1*x^4, with %e A220668 the row polynomial P(2,x) = C(2,sqrt(x))^2 = 4 - 4*x + 1*x^2. %Y A220668 Cf. A127672. %K A220668 sign,easy,tabf %O A220668 0,1 %A A220668 _Wolfdieter Lang_, Dec 26 2012