This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A220674 #46 Jun 20 2023 10:03:39 %S A220674 1,7,2,0,3,1,1,4,2,9,7,3,7,1,7,1,6,6,2,6,1,8,8,1,7,8,1,0,2,8,4,9,4,7, %T A220674 9,7,6,1,6,1,2,0,3,4,6,8,1,1,1,8,9,7,9,1,2,7,4,5,8,4,2,5,3,3,3,2,2,7, %U A220674 4,2,5,3,9,8,5,9,6,0,2,9,0,4,8,3,9,0,6,2,5,2,9,6,1,6,0,8,6,1,2,8 %N A220674 Decimal expansion of the area of Dürer's approximation of a regular pentagon with each side of unit length. %C A220674 To be read as dimensionless area F_D/r^2 = 1.720311429... where the length of each side is r, which is the radius of each circle in Dürer's construction. See the link Dürer, Zweites Buch, figure 16. Compare this with the regular pentagon with unit side length, which is given in A102771, and is F_5/r^2 = 1.720477400... The relative error is about -0.96*10^{-4}. %C A220674 The angles in Dürer's pentagon are approximately twice 108.3661201 degrees, twice 107.0378260 degrees and once 109.1921079 degrees. The sum has to be exactly 3*Pi, or 540 degrees, as for any pentagon. For the analytic values see the W. Lang link. %C A220674 _Alonso del Arte_ pointed out the Hughes reference where this construction is shown on p. 5 and p. 16. See also the historical remarks on p. 17. %C A220674 In the cut-the-knot link this construction is considered in more detail, and the two interior angles at the bottom of the pentagon are shown to be 108.36612... degrees. %C A220674 For more references and links see the W. Lang link. The length of the dimensionless diagonals which approximate the golden section are also given there, and the angles of the companion of Dürer's pentagon with the same area are computed there. - _Wolfdieter Lang_, Feb 14 2013 %H A220674 G. C. Greubel, <a href="/A220674/b220674.txt">Table of n, a(n) for n = 1..10000</a> %H A220674 Cut-The-Knot, <a href="http://www.cut-the-knot.org/pythagoras/DurerPentagon.shtml">Approximate Construction of Regular Pentagon by A. Dürer</a> %H A220674 G. Hughes, <a href="http://arxiv.org/abs/1205.0080">The Polygons of Albrecht Durer -1525</a>, arXiv:1205.0080 [math.HO], 2012. %H A220674 Wolfdieter Lang, <a href="/A220674/a220674_3.pdf">Albrecht Dürer's approximation of a regular 5-gon</a>. %H A220674 Wikimedia Commons, <a href="http://commons.wikimedia.org/wiki/File:Duerer_Underweysung_der_Messung_005.jpg">Albrecht Dürer, Underweysung der messung ..., 1525, title page</a>. %H A220674 Wikisource <a href="http://de.wikisource.org/wiki/Underweysung_der_Messung,_mit_dem_Zirckel_und_Richtscheyt,_in_Linien,_Ebenen_unnd_gantzen_corporen/Zweites_Buch">Albrecht Dürer, Underweysung der messung ..., Zweites Buch, 1525</a> (in German). %F A220674 The dimensionless area of Dürer's pentagon is %F A220674 F_D/r^2 = (1 + 2*x)*y1/2 + x*y2, with x = (a + sqrt(a*(a+8)))/4, a := sqrt(3) - 1, y1 = 1 - sqrt(3)/2 + x, y2 = sqrt(1 - x^2). The approximate values for x, y1 and y2 are 0.8150878978, 0.9490624938, 0.5793373101, respectively. This leads to the approximate value 1.720311430 for F_D/r^2, and the present sequence gives more accurate digits. %t A220674 r = Sqrt[7 - 3*Sqrt[3] + 2*(Sqrt[3]-1)* Cos[a]]; area = (2 + Sqrt[3] + r - 2*Cos[a]*(r+2))/4 /. Cos[a] -> (3 - Sqrt[3] - Sqrt[6*Sqrt[3]-4])/4; RealDigits[area, 10, 100] // First (* _Jean-François Alcover_, Feb 13 2013 *) %Y A220674 Cf. A102771 (pentagon area). %K A220674 nonn,cons %O A220674 1,2 %A A220674 _Wolfdieter Lang_, Jan 30 2013