cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A187830 a(n)=2*a(n-1)+(n+3)*a(n-2)-(n+3)*a(n-3), a(0)=0, a(1)=0, a(2)=1.

Original entry on oeis.org

0, 0, 1, 2, 11, 30, 141, 472, 2165, 8302, 38613, 163144, 780953, 3554402, 17611557, 85145196, 437376337, 2225425454, 11847704869, 63032490312, 347377407169, 1923189664970, 10955002251365, 62881123205556, 369621186243777, 2193173759204902, 13281809346518213
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 27 2012

Keywords

Comments

This is case k=3. In general case, recurrence a(n)=2*a(n-1)+(n+k)*(a(n-2)-a(n-3)) is asymptotic to a(n) ~ c * n^(n/2+k/2+1)*exp(sqrt(n)-n/2-1/4) * (1+(12*k+31)/(24*sqrt(n))), where c is constant dependent only on k.
EGF is solution of the equation DSolve[{(3+k)*f[x] + (x-3-k)*f'[x] - (x+2)*f''[x] + f'''[x]==0, f[0]==0, f'[0]==0, f''[0]==1}, f, x]

Crossrefs

Cf. A220700 (k=2), A213720 (k=1), A185309 (k=0), A185308 (k=-1), A186738 (k=-2), A186739 (k=-3), A193361 (k=-4), A220699 (k=-5).

Programs

  • Mathematica
    RecurrenceTable[{(3+n)*a[-3+n]+(-3-n)*a[-2+n]-2*a[-1+n]+a[n]==0,a[0]==0,a[1]==0,a[2]==1},a,{n,20}]
    FullSimplify[CoefficientList[Series[1/30*E^(-(x^2/2))*((8*Sqrt[2*E*Pi]*Erf[1/Sqrt[2]]-27)*E^(x^2+x)*(x+1)*(x*(x+2)*(x*(x+2)+12)+26)+Sqrt[2*Pi]*E^(x^2+x)*(x+1)*(x*(x+2)*(x*(x+2)+12)+26)*(15*Erf[x/Sqrt[2]]-8*Sqrt[E]*Erf[(x+1)/Sqrt[2]])-16*E^(x^2/2)*(x*(x+2)+2)*(x*(x+2)+9)+30*E^(1/2*x*(x+2))*(x*(x*(x*(x+5)+19)+35)+33)), {x, 0, 20}], x]* Range[0, 20]!]

Formula

E.g.f.: 1/30*exp(-(x^2/2))*((8*sqrt(2*exp(1)*Pi)*erf(1/sqrt(2))-27)*exp(x^2+x)*(x+1)*(x*(x+2)*(x*(x+2)+12)+26)+sqrt(2*Pi)*exp(x^2+x)*(x+1)*(x*(x+2)*(x*(x+2)+12)+26)*(15*erf(x/sqrt(2))-8*sqrt(exp(1))*erf((x+1)/sqrt(2)))-16*exp(x^2/2)*(x*(x+2)+2)*(x*(x+2)+9)+30*exp(1/2*x*(x+2))*(x*(x*(x*(x+5)+19)+35)+33))
a(n) ~ (1/2*sqrt(Pi)-9/(10*sqrt(2))+4/15*sqrt(Pi)*exp(1/2)*(erf(1/sqrt(2))-1)) * n^(n/2+5/2)*exp(sqrt(n)-n/2-1/4) * (1+(67/(24*sqrt(n))))
Showing 1-1 of 1 results.