A220710 Number of ways to reciprocally link elements of an 5 X n array either to themselves or to exactly two horizontal and antidiagonal neighbors, without consecutive collinear links.
1, 1, 8, 28, 107, 405, 1520, 5706, 21418, 80390, 301736, 1132543, 4250895, 15955408, 59887275, 224782132, 843701335, 3166765105, 11886195940, 44613876758, 167454575870, 628527215306, 2359126067724, 8854788952291, 33235734276043
Offset: 1
Keywords
Examples
Some solutions for n=3 0=self 3=ne 4=w 6=e 7=sw (reciprocal directions total 10): .00.00.00...00.00.00...00.67.47...00.67.47...00.00.00...00.00.00...00.00.00 .00.67.47...00.00.00...36.34.00...36.34.00...00.00.00...00.67.47...00.00.00 .36.34.00...00.00.00...00.00.00...00.00.00...00.67.47...36.34.00...00.00.00 .00.00.00...00.67.47...00.00.00...00.67.47...36.34.00...00.67.47...00.00.00 .00.00.00...36.34.00...00.00.00...36.34.00...00.00.00...36.34.00...00.00.00
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A220708.
Formula
Empirical: a(n) = 3*a(n-1) + 7*a(n-2) - 14*a(n-3) - 11*a(n-4) + 17*a(n-5) + 5*a(n-6) - 6*a(n-7) for n>11.
Empirical g.f.: x*(1 - 2*x - 2*x^2 + 11*x^3 - 8*x^4 - 6*x^5 + 14*x^6 - 18*x^7 - 3*x^8 + 18*x^9 - 8*x^10) / ((1 - x)*(1 + x)*(1 - 3*x - 6*x^2 + 11*x^3 + 5*x^4 - 6*x^5)). - Colin Barker, Aug 02 2018
Comments