cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A220710 Number of ways to reciprocally link elements of an 5 X n array either to themselves or to exactly two horizontal and antidiagonal neighbors, without consecutive collinear links.

Original entry on oeis.org

1, 1, 8, 28, 107, 405, 1520, 5706, 21418, 80390, 301736, 1132543, 4250895, 15955408, 59887275, 224782132, 843701335, 3166765105, 11886195940, 44613876758, 167454575870, 628527215306, 2359126067724, 8854788952291, 33235734276043
Offset: 1

Views

Author

R. H. Hardin, Dec 18 2012

Keywords

Comments

Row 5 of A220708.

Examples

			Some solutions for n=3 0=self 3=ne 4=w 6=e 7=sw (reciprocal directions total 10):
.00.00.00...00.00.00...00.67.47...00.67.47...00.00.00...00.00.00...00.00.00
.00.67.47...00.00.00...36.34.00...36.34.00...00.00.00...00.67.47...00.00.00
.36.34.00...00.00.00...00.00.00...00.00.00...00.67.47...36.34.00...00.00.00
.00.00.00...00.67.47...00.00.00...00.67.47...36.34.00...00.67.47...00.00.00
.00.00.00...36.34.00...00.00.00...36.34.00...00.00.00...36.34.00...00.00.00
		

Crossrefs

Cf. A220708.

Formula

Empirical: a(n) = 3*a(n-1) + 7*a(n-2) - 14*a(n-3) - 11*a(n-4) + 17*a(n-5) + 5*a(n-6) - 6*a(n-7) for n>11.
Empirical g.f.: x*(1 - 2*x - 2*x^2 + 11*x^3 - 8*x^4 - 6*x^5 + 14*x^6 - 18*x^7 - 3*x^8 + 18*x^9 - 8*x^10) / ((1 - x)*(1 + x)*(1 - 3*x - 6*x^2 + 11*x^3 + 5*x^4 - 6*x^5)). - Colin Barker, Aug 02 2018