cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A220752 Terms of A220698 that appear in A224218.

Original entry on oeis.org

3854, 3854, 3035, 3035, 3035, 3035, 3854, 4644, 4644, 4644, 4644, 4644, 3854, 15846, 4644, 4644, 4644, 4644, 4644, 22918, 15846, 15846, 10225, 10225, 10225, 10225, 15846, 22918, 15846, 13364, 13364, 13364, 13364, 10225, 10225, 10225, 10225, 15846, 13364, 13364, 22918, 45012
Offset: 1

Views

Author

Alex Ratushnyak, Apr 13 2013

Keywords

Comments

Terms of A220698 excluding terms that do not appear in A224218.
Indices of XOR-positive triangular numbers such that the generated triangular number is also XOR-positive (definition: triangular(i) is XOR-positive if triangular(i) XOR triangular(i+1) = triangular(k) for some k). XOR is the bitwise logical exclusive-or operator.
Conjecture: the sequence is infinite.
The subsequence with only odd terms begins: 3035, 3035, 3035, 3035, 10225, 10225, 10225, 10225, 10225, 10225, 10225, 10225, 171449, 171449, 236985, 171449, 339249.

Crossrefs

Programs

  • C
    #include 
    typedef unsigned long long U64;
    U64 rootTriangular(U64 a) {
        U64 sr = 1L<<32, s, b;
        if (a < (sr/2)*(sr+1)) {
              sr>>=1;
              while (a < sr*(sr+1)/2)  sr>>=1;
        }
        for (b = sr>>1; b; b>>=1) {
                s = sr+b;
                if (a >= s*(s+1)/2)  sr = s;
        }
        return sr;
    }
    int main() {
      U64 a, n, r, t;
      for (n=0; n < (1L<<32)-1; n++) {
        a = (n*(n+1)/2) ^ ((n+1)*(n+2)/2);
        t = rootTriangular(a);
        if (a == t*(t+1)/2) {
            a ^= (t+1)*(t+2)/2;
            r = rootTriangular(a);
            if (a == r*(r+1)/2)  printf("%llu, ", t);
        }
      }
    }