cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A220758 Number of nX4 arrays of the minimum value of corresponding elements and their horizontal, diagonal or antidiagonal neighbors in a random 0..3 nX4 array.

This page as a plain text file.
%I A220758 #6 Jul 23 2025 01:27:01
%S A220758 36,708,24934,548130,14683998,380208068,9770273902,252723391836,
%T A220758 6524302568076,168454068507408,4350085132885326,112325738184197486,
%U A220758 2900465800983255400,74895716770099261710,1933949707170534389126
%N A220758 Number of nX4 arrays of the minimum value of corresponding elements and their horizontal, diagonal or antidiagonal neighbors in a random 0..3 nX4 array.
%C A220758 Column 4 of A220761
%H A220758 R. H. Hardin, <a href="/A220758/b220758.txt">Table of n, a(n) for n = 1..210</a>
%F A220758 Empirical: a(n) = 27*a(n-1) +a(n-2) -68*a(n-3) -19944*a(n-4) +32202*a(n-5) -366806*a(n-6) -344162*a(n-7) +15645708*a(n-8) +386904618*a(n-9) +1605468711*a(n-10) -8682215207*a(n-11) -78537938933*a(n-12) -208552072676*a(n-13) +491361159633*a(n-14) +3431094062580*a(n-15) +12120704882974*a(n-16) +60720232090067*a(n-17) +102078457075308*a(n-18) -243273044500710*a(n-19) -4185445595713176*a(n-20) -12930074385916488*a(n-21) -1922629595776276*a(n-22) -3299597078536171*a(n-23) +159039644034236618*a(n-24) +782370861565903917*a(n-25) +6412556777179559410*a(n-26) +6133100920748595949*a(n-27) -41882141855763704337*a(n-28) -159326355659560116749*a(n-29) -163297657208749181397*a(n-30) +572123341282764490821*a(n-31) +1255229583783726960654*a(n-32) +1488502209761924258154*a(n-33) +988940775068036154969*a(n-34) +6779459528797080410846*a(n-35) +1313823383194793995760*a(n-36) -97328940790454219802756*a(n-37) -209463931263082261578826*a(n-38) -12548232830111895289756*a(n-39) +824823210803212904400308*a(n-40) +779310800259470202905381*a(n-41) -1298342472005470490372371*a(n-42) +797155389792804532051224*a(n-43) +11048483819972797709340490*a(n-44) +6080321908313837145985010*a(n-45) -45302692695747209380018605*a(n-46) -70999026208163113570367190*a(n-47) +71007484512972701691045139*a(n-48) +184293013927715950999656535*a(n-49) -281442135053111108184732426*a(n-50) -500881159231708052189115841*a(n-51) +949200365762267281715595095*a(n-52) +1976660100918469213599558080*a(n-53) -2108742879174070358386388390*a(n-54) -4435413149804422478078871865*a(n-55) +5324216480091762008996658012*a(n-56) +7452042438355837477317915019*a(n-57) -8577657839400234604430715748*a(n-58) -20252057676395727155218625915*a(n-59) +19527055142749768157186620745*a(n-60) +25148678453293867806624615880*a(n-61) -29549407986089189204388198551*a(n-62) -28952238339436623023694913717*a(n-63) +27790577254827940522738227784*a(n-64) +49237883586505974342032811871*a(n-65) -45995441582091648747603552108*a(n-66) +19787087816767962425926765404*a(n-67) +15785995571636887099831631932*a(n-68) -28237170212481440355269955812*a(n-69) -40259252050526281421801296864*a(n-70) -6863781714157965791634605104*a(n-71) +78456812405443228233291728220*a(n-72) -34927460819446521312392169304*a(n-73) -21650356288869917046673245936*a(n-74) +1963156324141012945623581408*a(n-75) +42630197123822889068328485944*a(n-76) -33870548551049723193264289184*a(n-77) -22046119727193068068885975648*a(n-78) +38552704964112017571370413600*a(n-79) -362470781177013401642583360*a(n-80) -1381223497910062770825013728*a(n-81) -16739401330703198687860181376*a(n-82) +4970715623803052430149915136*a(n-83) +5332800838136000359136661504*a(n-84) +178581973681933507453084416*a(n-85) -2932052182660659169718240256*a(n-86) -533938035446624512302912000*a(n-87) +874482649982525851622627328*a(n-88) +188809512870076407629365248*a(n-89) -122330833300625017107308544*a(n-90) -48607784672423021481885696*a(n-91) +13756551114957292453625856*a(n-92) +9547831666064583641530368*a(n-93) +732299333706987831558144*a(n-94) -47877015262019620700160*a(n-95) +32323357902855494172672*a(n-96) +2542332899731150209024*a(n-97) -193251539677656121344*a(n-98) -2565554407382974464*a(n-99)
%e A220758 Some solutions for n=3
%e A220758 ..1..1..3..3....2..0..0..0....3..1..3..1....1..0..0..0....0..0..3..3
%e A220758 ..1..1..3..1....1..0..0..0....1..1..1..1....1..0..1..0....1..0..2..1
%e A220758 ..3..1..1..1....0..0..0..2....3..1..3..1....2..2..2..2....1..1..1..1
%K A220758 nonn
%O A220758 1,1
%A A220758 _R. H. Hardin_ Dec 19 2012