cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A220780 Nonzero terms of A220779: exponent of highest power of 2 dividing an even sum 1^n + 2^n + ... + n^n.

Original entry on oeis.org

2, 1, 4, 2, 2, 1, 6, 3, 2, 1, 4, 2, 2, 1, 8, 4, 2, 1, 4, 2, 2, 1, 6, 3, 2, 1, 4, 2, 2, 1, 10, 5, 2, 1, 4, 2, 2, 1, 6, 3, 2, 1, 4, 2, 2, 1, 8, 4, 2, 1, 4, 2, 2, 1, 6, 3, 2, 1, 4, 2, 2, 1, 12, 6, 2, 1, 4, 2, 2, 1, 6, 3, 2, 1, 4, 2, 2, 1, 8, 4, 2, 1, 4, 2, 2, 1
Offset: 1

Views

Author

Jonathan Sondow, Dec 20 2012

Keywords

Comments

2-adic valuation of Sum_{k=1..n} k^n for n == 0 or 3 mod 4.
See references, links, formulas, and example in A220779.

Crossrefs

Programs

  • Mathematica
    Table[n = 2*k + Mod[k, 2]; IntegerExponent[ Sum[a^n, {a, 1, n}], 2], {k, 150}]
  • Python
    from sympy import harmonic
    def A220780(n): return (~(m:=int(harmonic(k:=(n<<1)+(n&1),-k)))&m-1).bit_length() # Chai Wah Wu, Jul 11 2022
Showing 1-1 of 1 results.