cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A220863 Choose smallest m>0 such that the n-th rational prime p splits in the imaginary quadratic extension field K = Q(sqrt(-m)); a(n) = discriminant(K).

Original entry on oeis.org

-7, -8, -4, -3, -8, -4, -4, -8, -20, -4, -3, -4, -4, -8, -20, -4, -8, -4, -8, -7, -4, -3, -8, -4, -4, -4, -3, -8, -4, -4, -3, -8, -4, -8, -4, -3, -4, -8, -20, -4, -8, -4, -7, -4, -4, -3, -8, -3, -8, -4, -4, -7, -4, -8, -4, -20, -4, -3, -4, -4, -8, -4, -8, -11, -4, -4, -8, -4, -8, -4, -4, -7, -3, -4, -8
Offset: 1

Views

Author

N. J. A. Sloane, Dec 26 2012

Keywords

Comments

a(n) = discriminant of extension field defined in A220862.

References

  • David A. Cox, "Primes of the Form x^2 + n y^2", Wiley, 1989, Cor. 5.17, p. 105.

Crossrefs

Formula

Let i = A220862(n). Then a(n) = i if i == 1 (mod 4), otherwise 4i.