cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A220882 Number of (n - 6)-dissections of an n-gon (equivalently, the number of three-dimensional faces of the (n-3)-dimensional associahedron) modulo the cyclic action.

Original entry on oeis.org

1, 2, 16, 93, 505, 2548, 12400, 58140, 266550, 1198564, 5312032, 23263695, 100910001, 434217000, 1855972096, 7887862224, 33359979546, 140492933100, 589495272736, 2465455090098, 10281760786682, 42768958597992, 177499631598976, 735146520745000, 3039095720959424, 12542491305496152
Offset: 6

Views

Author

N. J. A. Sloane, Dec 28 2012

Keywords

Crossrefs

Programs

  • Maple
    C:=n->binomial(2*n,n)/(n+1);
    T4:=proc(n) local t1; global C;
    t1 :=  (((n-3)*(n-4)^2*(n-5))/(24*n*(2*n-5)))*C(n-2);
    if n mod 2 = 0 then t1:=t1+((n-4)^2/(4*n))*C(n/2-2) fi;
    if n mod 3 = 0 then t1:=t1+((n-3)/9)*C(n/3-1) fi;
    if n mod 6 = 0 then t1:=t1+C(n/6-1)/3 fi;
    t1; end;
    [seq(T4(n),n=6..40)];
  • Mathematica
    c = CatalanNumber;
    T4[n_] := Module[{t1},
    t1 = (((n - 3)*(n - 4)^2*(n - 5))/(24*n*(2*n - 5)))*c[n - 2];
    If[Mod[n, 2] == 0, t1 = t1 + ((n - 4)^2/(4*n))*c[n/2 - 2]];
    If[Mod[n, 3] == 0, t1 = t1 + ((n - 3)/9)*c[n/3 - 1]];
    If[Mod[n, 6] == 0, t1 = t1 + c[n/6 - 1]/3]; t1];
    Table[T4[n], {n, 6, 40}] (* Jean-François Alcover, Dec 02 2017, from Maple *)

Formula

See Maple code.