A220882 Number of (n - 6)-dissections of an n-gon (equivalently, the number of three-dimensional faces of the (n-3)-dimensional associahedron) modulo the cyclic action.
1, 2, 16, 93, 505, 2548, 12400, 58140, 266550, 1198564, 5312032, 23263695, 100910001, 434217000, 1855972096, 7887862224, 33359979546, 140492933100, 589495272736, 2465455090098, 10281760786682, 42768958597992, 177499631598976, 735146520745000, 3039095720959424, 12542491305496152
Offset: 6
Keywords
Links
- Douglas Bowman and Alon Regev, Counting symmetry classes of dissections of a convex regular polygon, arXiv preprint arXiv:1209.6270 [math.CO], 2012.
Programs
-
Maple
C:=n->binomial(2*n,n)/(n+1); T4:=proc(n) local t1; global C; t1 := (((n-3)*(n-4)^2*(n-5))/(24*n*(2*n-5)))*C(n-2); if n mod 2 = 0 then t1:=t1+((n-4)^2/(4*n))*C(n/2-2) fi; if n mod 3 = 0 then t1:=t1+((n-3)/9)*C(n/3-1) fi; if n mod 6 = 0 then t1:=t1+C(n/6-1)/3 fi; t1; end; [seq(T4(n),n=6..40)];
-
Mathematica
c = CatalanNumber; T4[n_] := Module[{t1}, t1 = (((n - 3)*(n - 4)^2*(n - 5))/(24*n*(2*n - 5)))*c[n - 2]; If[Mod[n, 2] == 0, t1 = t1 + ((n - 4)^2/(4*n))*c[n/2 - 2]]; If[Mod[n, 3] == 0, t1 = t1 + ((n - 3)/9)*c[n/3 - 1]]; If[Mod[n, 6] == 0, t1 = t1 + c[n/6 - 1]/3]; t1]; Table[T4[n], {n, 6, 40}] (* Jean-François Alcover, Dec 02 2017, from Maple *)
Formula
See Maple code.