This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A220885 #29 May 21 2020 10:26:47 %S A220885 5,8,12,19,28,40,56,77,105,142,191,256,342,456,607,807,1072,1423,1888, %T A220885 2504,3320,4401,5833,7730,10243,13572,17982,23824,31563,41815,55396, %U A220885 73387,97220,128792,170616,226021,299417,396646,525447,696072,922102,1221528,1618183,2143639,2839720,3761831,4983368 %N A220885 a(3)=5, a(4)=8, a(5)=12; thereafter a(n) = a(n-1) + A000931(n+7). %H A220885 Reinhard Zumkeller, <a href="/A220885/b220885.txt">Table of n, a(n) for n = 3..1000</a> %H A220885 P. Caron, J.-M. Champarnaud and L. Mignot, <a href="https://www.researchgate.net/publication/257380226_Multi-tilde-bar_expressions_and_their_automata">Multi-tilde-bar expressions and their automata</a>, Acta Informatica, September 2012, Volume 49, Issue 6, pp 413-436. DOI 10.1007/s00236-012-0167-x. See the sequence t(k). %H A220885 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,0,-1). %F A220885 a(3)=5, a(4)=8, a(5)=12; thereafter a(n) = a(n-1) + Pad(n) + 2*Pad(n+1) + 2*Pad(n+2), where Pad() = A000931(). %F A220885 a(n) = a(n-1)+a(n-2)-a(n-4) for n>8. G.f.: x^3*(x^5+2*x^4-x^3-x^2+3*x+5) / ((x-1)*(x^3+x^2-1)). [_Colin Barker_, Jan 04 2013] %F A220885 a(n) = a(n-1) + A000931(n+7) for n > 5. - _Reinhard Zumkeller_, Feb 19 2013 %F A220885 a(n) = a(n-2) + a(n-3) + 9 for n >= 8. - _Greg Dresden_, May 18 2020 %t A220885 Join[{5,8},LinearRecurrence[{1,1,0,-1},{12,19,28,40},50]] (* _Harvey P. Dale_, May 30 2014 *) %o A220885 (Haskell) %o A220885 a220885 n = a220885_list !! (n-3) %o A220885 a220885_list = 5 : 8 : zs where %o A220885 zs = 12 : zipWith (+) zs (drop 13 a000931_list) %o A220885 -- _Reinhard Zumkeller_, Feb 19 2013 %K A220885 nonn,easy %O A220885 3,1 %A A220885 _N. J. A. Sloane_, Dec 29 2012, based on an email from Ludovic Mignot, Dec 27 2012 %E A220885 Simpler definition from _Reinhard Zumkeller_, Dec 30 2012