A220888 a(n) = F(n+7) - (1/2)*(n^3+2*n^2+13*n+26) where F(i) is a Fibonacci number (A000045).
0, 0, 0, 0, 2, 11, 37, 98, 225, 470, 919, 1713, 3082, 5400, 9274, 15688, 26236, 43499, 71655, 117466, 191875, 312590, 508265, 825265, 1338612, 2169696, 3514932, 5692128, 9215510, 14917115, 24143209, 39072098, 63228357, 102314870, 165559099, 267891393, 433469566, 701381784, 1134874030
Offset: 0
Keywords
Links
- J. Freixas and S. Kurz, The golden number and Fibonacci sequences in the design of voting structures, 2012.
- J. Freixas and S. Kurz, The golden number and Fibonacci sequences in the design of voting structures, arXiv:1401.8180 [math.CO], 2014.
- Index entries for linear recurrences with constant coefficients, signature (5,-9,6,1,-3,1).
Programs
-
Mathematica
LinearRecurrence[{5, -9, 6, 1, -3, 1}, {0, 0, 0, 0, 2, 11}, 39] (* Jean-François Alcover, Feb 12 2019 *)
Formula
G.f.: -x^4*(2+x) / ( (x^2+x-1)*(x-1)^4 ). - R. J. Mathar, Jan 11 2013