A220890 a(n) = smallest m such that A187824(m) = n, or -1 if A187824 never takes the value n.
-1, -1, -1, 2, 3, 4, 5, 29, 41, 55, 71, 881, 791, 9360, 10009, 1079, 30239, -1, 246960, -1, 636481, 1360800, 3160079, -1, 2162161
Offset: 0
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 0..70
- Don Reble, Division gets rough: OEIS A187824 and A220890.
Programs
-
Maple
N:= 70: # maximum m V[0]:= -1: V[1]:= -1: V[2]:= -1: S[3]:= {$0..5}: M[3]:= 6: # M[m] is the lcm of 1..m # S[m] is the set of residues mod M[m] for numbers n with A187824(n)>=m # A[m] is the set of residues mod M[m] for numbers n with A187824(n)=m-1 for m from 4 to N+1 do M[m]:= ilcm(M[m-1], m); p:= M[m]/M[m-1]; if p = 1 then T:= S[m-1] else T:= {seq(seq(a+b*M[m-1], a=S[m-1]), b=0..p-1)} end if; S[m],A[m]:= selectremove(t -> member(mods(t, m), {1, 0, -1}), T); if A[m] = {} then V[m-1]:= -1 else V[m-1]:= min(A[m]) end if; end do: seq(V[j], j=0..N); # Robert Israel, Dec 31 2012
Extensions
a(26) = 39412801. Double-checked all lower given values. - M. F. Hasler, Dec 30 2012
Comments