This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A220891 #32 May 18 2019 02:08:47 %S A220891 2,3,4,5,29,41,55,71,791,1079,30239,246960,636481,1360800,2162161, %T A220891 39412801,107881201,3625549201,170918748000,2355997644001, %U A220891 237662810985599,4614209634434399,7522575180120001,362645725505263201,10684484093105222399,442709913651892286399,5205240636387758366399 %N A220891 Where record values occur in A187824. %C A220891 Since A187824 is unbounded, this sequence is infinite. %H A220891 Robert Israel, <a href="/A220891/b220891.txt">Table of n, a(n) for n = 1..30</a> %p A220891 N:= 20: # number of record values wanted %p A220891 R[1]:= 2: R[2]:= 3: r:= 3: count:= 2: %p A220891 S[3]:= {$0..5}: M[3]:= 6: %p A220891 # M[m] is the lcm of 1..m %p A220891 # S[m] is the set of residues mod M[m] for numbers n with A187824(n)>=m %p A220891 # R[i] is the i'th record value %p A220891 for m from 4 while count < N do %p A220891 M[m]:= ilcm(M[m-1],m); p:= M[m]/M[m-1]; %p A220891 if p = 1 then T:= S[m-1] %p A220891 else T:= {seq(seq(a+b*M[m-1],a=S[m-1]),b=0..p-1)} %p A220891 end if; %p A220891 S[m]:= select(t -> member(mods(t,m),{1,0,-1}),T); %p A220891 r:= min(S[m] minus {0,1}); %p A220891 if r > R[count] then %p A220891 count:= count+1; R[count]:= r %p A220891 end if; %p A220891 end do: %p A220891 [seq(R[j],j=1..count)]; %p A220891 # _Robert Israel_, Dec 31 2012 %o A220891 (PARI) {m=0;for(n=1,9e9,m<A187824(n) || next; print1(n","); m=A187824(n))} \\ For illustrative purpose (values < 10^8) only. - _M. F. Hasler_, Dec 31 2012 %Y A220891 Cf. A187824, A220890, A056697. %K A220891 nonn %O A220891 1,1 %A A220891 _N. J. A. Sloane_, Dec 30 2012