A220947 Least prime p such that sum_{k=0}^n F(k+1)*x^{n-k} is irreducible modulo p, where F(j) denotes the Fibonacci number A000045(j).
2, 3, 2, 11, 3, 2, 5, 3, 2, 11, 5, 41, 181, 31, 73, 89, 5, 7, 71, 11, 29, 5, 193, 41, 89, 61, 2, 43, 3, 31, 13, 191, 2, 61, 103, 97, 103, 47, 383, 367, 89, 17, 191, 1627, 193, 163, 5, 337, 349, 23, 149, 193, 199, 233, 173, 617, 593, 59, 113, 151
Offset: 1
Keywords
Examples
a(2) = 3 since x^2+x+2 is irreducible modulo 3 but reducible modulo 2. Note also that a(13) = 181 = 13^2+12.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..450
Crossrefs
Programs
-
Mathematica
A[n_,x_]:=A[n,x]=Sum[Fibonacci[k+1]*x^(n-k),{k,0,n}] Do[Do[If[IrreduciblePolynomialQ[A[n,x],Modulus->Prime[k]]==True,Print[n," ",Prime[k]];Goto[aa]],{k,1,PrimePi[n^2+12]}]; Print[n," ",counterexample];Label[aa];Continue,{n,1,100}]
Comments