cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A220947 Least prime p such that sum_{k=0}^n F(k+1)*x^{n-k} is irreducible modulo p, where F(j) denotes the Fibonacci number A000045(j).

Original entry on oeis.org

2, 3, 2, 11, 3, 2, 5, 3, 2, 11, 5, 41, 181, 31, 73, 89, 5, 7, 71, 11, 29, 5, 193, 41, 89, 61, 2, 43, 3, 31, 13, 191, 2, 61, 103, 97, 103, 47, 383, 367, 89, 17, 191, 1627, 193, 163, 5, 337, 349, 23, 149, 193, 199, 233, 173, 617, 593, 59, 113, 151
Offset: 1

Views

Author

Zhi-Wei Sun, Apr 07 2013

Keywords

Comments

Conjecture: a(n) <= n^2+12 for all n>0.
Such a phenomenon happens quite often. In fact, for many interesting integer sequences a(k) (k=1,2,3,...), each of the polynomials x^n + sum_{k=0}^n a(k)*x^{n-k} (n>0) is irreducible modulo some prime not exceeding a*n^2+b*n+c, where a, b, c are suitable nonnegative constants.

Examples

			a(2) = 3 since x^2+x+2 is irreducible modulo 3 but reducible modulo 2.
Note also that a(13) = 181 = 13^2+12.
		

Crossrefs

Programs

  • Mathematica
    A[n_,x_]:=A[n,x]=Sum[Fibonacci[k+1]*x^(n-k),{k,0,n}]
    Do[Do[If[IrreduciblePolynomialQ[A[n,x],Modulus->Prime[k]]==True,Print[n," ",Prime[k]];Goto[aa]],{k,1,PrimePi[n^2+12]}];
    Print[n," ",counterexample];Label[aa];Continue,{n,1,100}]