A220962 Faulhaber’s triangle: triangle of numerators of coefficients of power-sum polynomials.
0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, -1, 0, 1, 1, 1, 0, 0, -1, 0, 5, 1, 1, 0, 1, 0, -1, 0, 1, 1, 1, 0, 0, 1, 0, -7, 0, 7, 1, 1, 0, -1, 0, 2, 0, -7, 0, 2, 1, 1, 0, 0, -3, 0, 1, 0, -7, 0, 3, 1, 1, 0, 5, 0, -1, 0, 1, 0, -1, 0, 5, 1, 1
Offset: 0
Examples
Rows start: 0,1; 0,1,1; 0,1,1,1; 0,0,1,1,1; 0,-1,0,1,1,1; 0,0,-1,0,5,1,1; 0,1,0,-1,0,1,1,1; 0,0,1,0,-7,0,7,1,1; 0,-1,0,2,0,-7,0,2,1,1; ...
Links
- Mohammad Torabi-Dashti, Faulhaber’s Triangle [Annotated scanned copy of preprint]
- Mohammad Torabi-Dashti, Faulhaber's Triangle, College Math. J., 42:2 (2011), 96-97.
- Eric Weisstein's MathWorld, Power Sum
Programs
-
Mathematica
f[n_, x_] := f[n,x]=((x + 1)^(n + 1) - 1)/(n + 1) - Sum[Binomial[n + 1, k]*f[k, x], {k , 0, n - 1}]/(n + 1); f[0, x_] := x; row[n_] := CoefficientList[f[n, x], x] // Numerator; Table[row[n], {n, 0, 10}] // Flatten
Comments