A220963 Faulhaber’s triangle: triangle of denominators of coefficients of power-sum polynomials.
1, 1, 1, 2, 2, 1, 6, 2, 3, 1, 1, 4, 2, 4, 1, 30, 1, 3, 2, 5, 1, 1, 12, 1, 12, 2, 6, 1, 42, 1, 6, 1, 2, 2, 7, 1, 1, 12, 1, 24, 1, 12, 2, 8, 1, 30, 1, 9, 1, 15, 1, 3, 2, 9, 1, 1, 20, 1, 2, 1, 10, 1, 4, 2, 10, 1, 66, 1, 2, 1, 1, 1, 1, 1, 6, 2, 11
Offset: 0
Examples
Rows start: 0,1; 0,1,1; 0,1,1,1; 0,0,1,1,1; 0,-1,0,1,1,1; 0,0,-1,0,5,1,1; 0,1,0,-1,0,1,1,1; 0,0,1,0,-7,0,7,1,1; 0,-1,0,2,0,-7,0,2,1,1; ...
Links
- Mohammad Torabi-Dashti, Faulhaber’s Triangle [Annotated scanned copy of preprint]
- Mohammad Torabi-Dashti, Faulhaber's Triangle, College Math. J., 42:2 (2011), 96-97.
- Eric Weisstein's MathWorld, Power Sum
Programs
-
Mathematica
f[n_, x_] := f[n,x]=((x + 1)^(n + 1) - 1)/(n + 1) - Sum[Binomial[n + 1, k]*f[k, x], {k , 0, n - 1}]/(n + 1); f[0, x_] := x; row[n_] := CoefficientList[f[n, x], x] // Numerator; Table[row[n], {n, 0, 10}] // Flatten
Comments