cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A220979 a(n) = 5^(4n+2) - 5^(3n+2) + 3 * 5^(2n+1) - 5^(n+1) + 1: the left Aurifeuillian factor of 5^(10n+5) - 1.

Original entry on oeis.org

11, 12851, 9384251, 6054921251, 3808599606251, 2383422998031251, 1490020755615156251, 931310653778075781251, 582075119020843503906251, 363797694444713592519531251, 227373652160169124603222656251, 142108544241637027263641113281251
Offset: 0

Views

Author

Stuart Clary, Dec 27 2012

Keywords

Comments

The corresponding right Aurifeuillian factor is A220980.

Crossrefs

Programs

  • Mathematica
    Table[5^(4n+2) - 5^(3n+2) + 3 * 5^(2n+1) - 5^(n+1) + 1, {n, 0, 30}]
  • PARI
    a(n)=5^(4*n+2)-5^(3*n+2)+3*5^(2*n+1)-5^(n+1)+1 \\ Charles R Greathouse IV, Sep 28 2015

Formula

Aurifeuillian factorization: 5^(10n+5) - 1 = (5^(2n+1) - 1) * a(n) * A220980(n).
G.f.: -(4296875*x^4+2662500*x^3+464450*x^2+4260*x+11) / ((x-1)*(5*x-1)*(25*x-1)*(125*x-1)*(625*x-1)). - Colin Barker, Jan 03 2013

A220986 The right Aurifeuillian factor of 10^(20n + 10) + 1.

Original entry on oeis.org

27961, 1105207205101, 101005020070200501001, 10010005002000700200050010001, 1000100005000200007000200005000100001, 100001000005000020000070000200000500001000001, 10000010000005000002000000700000200000050000010000001
Offset: 0

Views

Author

Stuart Clary, Dec 27 2012

Keywords

Comments

The corresponding left Aurifeuillian factor is A220985.

Crossrefs

Programs

  • Mathematica
    a[n_] := 10^(8n + 4) + 10^(7n + 4) + 5 * 10^(6n + 3) + 2 * 10^(5n + 3) + 7 * 10^(4n + 2) + 2 * 10^(3n + 2) + 5 * 10^(2n + 1) + 10^(n + 1) + 1

Formula

a(n) = 10^(8n + 4) + 10^(7n + 4) + 5 * 10^(6n + 3) + 2 * 10^(5n + 3) + 7 * 10^(4n + 2) + 2 * 10^(3n + 2) + 5 * 10^(2n + 1) + 10^(n + 1) + 1
Aurifeuillian factorization: 10^(20n + 10) + 1 = (10^(4n + 2) + 1) * A220985(n) * a(n)
Showing 1-2 of 2 results.