A221028 T(n,k) = Sum of neighbor maps: log base 2 of the number of n X k binary arrays indicating the locations of corresponding elements equal to the sum mod 2 of their horizontal, vertical and antidiagonal neighbors in a random 0..1 n X k array.
1, 1, 1, 3, 3, 3, 4, 6, 6, 4, 4, 6, 7, 6, 4, 6, 10, 11, 11, 10, 6, 7, 11, 14, 16, 14, 11, 7, 7, 13, 17, 20, 20, 17, 13, 7, 9, 16, 19, 21, 24, 21, 19, 16, 9, 10, 16, 24, 27, 30, 30, 27, 24, 16, 10, 10, 20, 27, 31, 35, 33, 35, 31, 27, 20, 10, 12, 21, 30, 33, 40, 42, 42, 40, 33, 30, 21, 12, 13
Offset: 1
Examples
Some solutions for n=3 k=4 ..1..1..0..0....1..1..0..0....1..0..1..0....0..1..1..0....0..0..1..0 ..0..0..1..1....1..0..1..0....1..1..1..1....1..1..0..1....0..0..0..1 ..1..0..1..0....0..1..0..0....1..1..1..0....0..1..0..1....1..1..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..161
Crossrefs
Column 1 is A117571.
Formula
Empirical for column k:
k=1: a(n) = a(n-1) +a(n-3) -a(n-4) increment period 3: 0 2 1
k=2: a(n) = a(n-1) +a(n-5) -a(n-6) increment period 5: 2 3 0 4 1
k=3: a(n) = a(n-1) +a(n-12) -a(n-13) increment period 12: 3 1 4 3 3 2 5 3 3 0 6 3
k=4: a(n) = a(n-1) +a(n-17) -a(n-18) increment period 17: 2 5 5 4 1 6 4 2 7 4 3 3 6 4 0 8 4
k=5: a(n) = a(n-1) +a(n-30) -a(n-31) increment period 30: 6 4 6 4 6 5 5 2 6 7 4 3 7 3 7 6 3 4 8 5 5 4 6 4 6 4 6 0 10 4
Comments