cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A221054 Numbers whose distinct prime factors can be partitioned into two equal sums.

This page as a plain text file.
%I A221054 #35 Jun 18 2025 00:58:13
%S A221054 1,30,60,70,90,120,140,150,180,240,270,280,286,300,350,360,450,480,
%T A221054 490,540,560,572,600,646,700,720,750,810,900,960,980,1080,1120,1144,
%U A221054 1200,1292,1350,1400,1440,1500,1620,1750,1798,1800,1920,1960,2145,2160,2240,2250,2288,2310,2400,2430,2450,2584,2700,2730,2800,2880,3000,3135
%N A221054 Numbers whose distinct prime factors can be partitioned into two equal sums.
%C A221054 This is a superset of 2*product of twin primes, A071142.
%H A221054 Alois P. Heinz, <a href="/A221054/b221054.txt">Table of n, a(n) for n = 1..10000</a>
%H A221054 Christian N. K. Anderson, <a href="/A221054/a221054_1.txt">Table of n, a(n), and equal sums of factors for n=1..10000</a>
%t A221054 q[n_] := Module[{p = FactorInteger[n][[;; , 1]], sum, x}, sum = Total[p]; EvenQ[sum] && CoefficientList[Product[1 + x^i, {i, p}], x][[1 + sum/2]] > 0]; Select[Range[3200], q] (* _Amiram Eldar_, May 31 2025 *)
%o A221054 (Haskell)
%o A221054 a221054 n = a221054_list !! (n-1)
%o A221054 a221054_list = filter (z 0 0 . a027748_row) $ tail a005843_list where
%o A221054    z u v []     = u == v
%o A221054    z u v (p:ps) = z (u + p) v ps || z u (v + p) ps
%o A221054 -- _Reinhard Zumkeller_, Apr 18 2013
%o A221054 (PARI) isok(k) = my(f=factor(k), nb=#f~); for (i=0,2^nb-1, my(v=Vec(Vecrev(binary(i)), nb)); if (sum(k=1, nb, if (v[k], f[k,1])) == sum(k=1, nb, if (!v[k], f[k,1])), return(1));); \\ _Michel Marcus_, May 31 2025
%Y A221054 Cf. A175592 (multiplicity of prime factors allowed).
%Y A221054 Cf. A071139-A071147, especially A071140.
%Y A221054 Cf. A008472, A037074, A071142.
%Y A221054 Cf. A027748, A005843, A083207.
%K A221054 nonn
%O A221054 1,2
%A A221054 _Kevin L. Schwartz_ and _Christian N. K. Anderson_, Apr 15 2013
%E A221054 Missing terms inserted by _Michel Marcus_, May 31 2025