A221067 Sum of neighbor maps: number of nX3 binary arrays indicating the locations of corresponding elements equal to the sum mod 4 of their king-move neighbors in a random 0..3 nX3 array.
8, 20, 512, 4096, 26976, 262144, 2097152, 16401664, 134217728, 1073741824, 8572235776, 68719476736, 549755813888, 4397319143424, 35184372088832, 281474976710656, 2251771635433472, 18014398509481984, 144115188075855872
Offset: 1
Keywords
Examples
Some solutions for n=3 ..0..0..0....0..0..1....1..1..0....1..1..0....1..0..1....1..0..0....0..1..0 ..1..0..0....0..1..1....0..1..0....1..1..1....0..1..0....0..1..1....1..0..0 ..1..1..1....1..1..1....0..1..0....1..1..1....1..0..0....0..1..0....1..0..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = 8*a(n-1) +160*a(n-3) -1280*a(n-4) -11200*a(n-6) +89600*a(n-7) +453632*a(n-9) -3629056*a(n-10) -11841536*a(n-12) +94732288*a(n-13) +209715200*a(n-15) -1677721600*a(n-16) -2577661952*a(n-18) +20621295616*a(n-19) +22041067520*a(n-21) -176328540160*a(n-22) -128781910016*a(n-24) +1030255280128*a(n-25) +490700013568*a(n-27) -3925600108544*a(n-28) -1099511627776*a(n-30) +8796093022208*a(n-31) +1099511627776*a(n-33) -8796093022208*a(n-34)
Comments