A221066
Sum of neighbor maps: number of n X 2 binary arrays indicating the locations of corresponding elements equal to the sum mod 4 of their king-move neighbors in a random 0..3 n X 2 array.
Original entry on oeis.org
2, 8, 20, 56, 168, 476, 1364, 3952, 11360, 32692, 94236, 271352, 781432, 2250892, 6482724, 18670784, 53775312, 154880036, 446074860, 1284760776, 3700290152, 10657349244, 30694667380, 88404940816, 254618597952, 733337259924
Offset: 1
Some solutions for n=3:
..0..0....0..0....1..1....0..1....0..1....0..0....0..1....0..0....0..0....1..0
..1..0....0..1....0..0....0..0....1..0....0..0....0..1....1..1....1..0....0..0
..0..1....1..0....0..0....0..1....0..0....1..1....0..0....1..1....1..0....0..1
A221067
Sum of neighbor maps: number of nX3 binary arrays indicating the locations of corresponding elements equal to the sum mod 4 of their king-move neighbors in a random 0..3 nX3 array.
Original entry on oeis.org
8, 20, 512, 4096, 26976, 262144, 2097152, 16401664, 134217728, 1073741824, 8572235776, 68719476736, 549755813888, 4397319143424, 35184372088832, 281474976710656, 2251771635433472, 18014398509481984, 144115188075855872
Offset: 1
Some solutions for n=3
..0..0..0....0..0..1....1..1..0....1..1..0....1..0..1....1..0..0....0..1..0
..1..0..0....0..1..1....0..1..0....1..1..1....0..1..0....0..1..1....1..0..0
..1..1..1....1..1..1....0..1..0....1..1..1....1..0..0....0..1..0....1..0..1
A221068
Sum of neighbor maps: number of nX4 binary arrays indicating the locations of corresponding elements equal to the sum mod 4 of their king-move neighbors in a random 0..3 nX4 array.
Original entry on oeis.org
16, 56, 4096, 65536, 829184, 16777216, 268435456, 4185880576, 68719476736, 1099511627776, 17551735783424, 281474976710656, 4503599627370496, 72044225131708416, 1152921504606846976, 18446744073709551616
Offset: 1
Some solutions for n=3
..1..0..1..1....0..1..1..1....1..1..1..1....0..0..1..0....1..0..0..1
..0..1..0..0....0..0..1..1....0..1..0..1....1..0..0..0....0..0..1..1
..1..1..0..0....1..0..0..1....0..0..0..0....0..1..0..1....1..0..0..1
A221065
Sum of neighbor maps: number of n X n binary arrays indicating the locations of corresponding elements equal to the sum mod 4 of their king-move neighbors in a random 0..3 n X n array.
Original entry on oeis.org
2, 8, 512, 65536, 17530176, 68719476736, 562949953421312
Offset: 1
Some solutions for n=3
..0..1..0....1..0..1....1..1..1....0..0..1....0..1..1....1..0..0....0..0..0
..1..1..1....1..1..0....0..1..0....0..1..1....1..1..0....0..1..1....1..1..0
..1..0..0....1..0..1....0..1..1....1..1..1....0..1..0....1..0..0....1..0..1
A221069
Sum of neighbor maps: number of nX5 binary arrays indicating the locations of corresponding elements equal to the sum mod 4 of their king-move neighbors in a random 0..3 nX5 array.
Original entry on oeis.org
24, 168, 26976, 829184, 17530176, 811440640, 25241048576
Offset: 1
Some solutions for n=3
..1..0..0..0..1....0..1..0..0..1....0..0..1..1..0....1..0..0..0..1
..1..0..0..0..1....0..1..0..1..1....1..0..1..0..1....0..0..1..0..1
..1..0..1..0..1....0..0..0..1..0....0..0..1..0..1....1..0..0..0..1
A221070
Sum of neighbor maps: number of n X 6 binary arrays indicating the locations of corresponding elements equal to the sum mod 4 of their king-move neighbors in a random 0..3 n X 6 array.
Original entry on oeis.org
64, 476, 262144, 16777216, 811440640, 68719476736, 4398046511104, 275046044778496, 18014398509481984, 1152921504606846976, 73666094089946267648
Offset: 1
Some solutions for n=3
..0..0..0..1..1..1....0..0..1..0..1..0....0..0..0..0..0..0....0..1..0..0..0..0
..1..0..0..1..1..1....0..0..0..0..1..0....0..0..0..1..1..0....1..1..0..0..0..0
..1..0..0..0..1..0....1..0..0..1..1..1....1..1..0..0..1..1....0..0..0..0..1..1
A221071
Sum of neighbor maps: number of nX7 binary arrays indicating the locations of corresponding elements equal to the sum mod 4 of their king-move neighbors in a random 0..3 nX7 array.
Original entry on oeis.org
128, 1364, 2097152, 268435456, 25241048576, 4398046511104, 562949953421312, 70342550622109696
Offset: 1
Some solutions for n=3
..0..0..0..0..1..1..1....0..0..1..0..0..1..1....0..0..0..0..1..1..1
..0..0..1..0..0..0..0....0..0..1..0..0..1..0....0..0..0..0..1..0..0
..0..0..0..0..0..0..0....0..1..1..1..0..0..1....0..1..0..0..0..1..0
Showing 1-7 of 7 results.
Comments