cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A221073 Simple continued fraction expansion of an infinite product.

This page as a plain text file.
%I A221073 #30 Sep 08 2022 08:46:04
%S A221073 2,4,1,8,1,32,1,56,1,196,1,336,1,1152,1,1968,1,6724,1,11480,1,39200,1,
%T A221073 66920,1,228484,1,390048,1,1331712,1,2273376,1,7761796,1,13250216,1,
%U A221073 45239072,1,77227928,1,263672644,1,450117360,1,1536796800,1,2623476240,1
%N A221073 Simple continued fraction expansion of an infinite product.
%C A221073 Simple continued fraction expansion of product {n >= 0} {1 - sqrt(m)*[sqrt(m) - sqrt(m-1)]^(4*n+3)}/{1 - sqrt(m)*[sqrt(m) - sqrt(m-1)]^(4*n+1)} at m = 2. For other cases see A221074 (m = 3), A221075 (m = 4) and A221076 (m = 5).
%C A221073 If we denote the present sequence by [2; 4, 1, c(3), 1, c(4), 1, ...] then for k >= 1 the sequence [1; c(2*k+1), 1, c(2*(2*k+1)), 1, c(3*(2*k+1)), 1, ...] gives the simple continued fraction expansion of product {n >= 0} [1-sqrt(2)*{(sqrt(2)-1)^(2*k+1)}^(4*n+3)]/[1 - sqrt(2)*{(sqrt(2)-1)^(2*k+1)}^(4*n+1)]. An example is given below.
%H A221073 G. C. Greubel, <a href="/A221073/b221073.txt">Table of n, a(n) for n = 0..1000</a>
%H A221073 P. Bala, <a href="/A174500/a174500_2.pdf">Some simple continued fraction expansions for an infinite product, Part 1</a>
%H A221073 <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (0,1,0,6,0,-6,0,-1,0,1).
%F A221073 a(2*n) = 1 for n >= 1. For n >= 1 we have
%F A221073 a(4*n - 3) = (sqrt(2) + 1)^(2*n) + (sqrt(2) - 1)^(2*n) - 2;
%F A221073 a(4*n - 1) = 1/sqrt(2)*{(sqrt(2) + 1)^(2*n + 1) + (sqrt(2) - 1)^(2*n + 1)} - 2.
%F A221073 a(4*n - 3) = 4*A001108(n); a(4*n - 1) = 4*A053141(n).
%F A221073 O.g.f.: 2 + x^2/(1 - x^2) + 4*x*(1 + x^2)^2/(1 - 7*x^4 + 7*x^8 - x^12) = 2 + 4*x + x^2 + 8*x^3 + x^4 + 32*x^5 + ....
%F A221073 O.g.f.: (x^10-2*x^8-6*x^6+12*x^4-4*x^3+x^2-4*x-2) / ((x-1)*(x+1)*(x^4-2*x^2-1)*(x^4+2*x^2-1)). - _Colin Barker_, Jan 10 2014
%e A221073 Product {n >= 0} {1 - sqrt(2)*(sqrt(2) - 1)^(4*n+3)}/{1 - sqrt(2)*(sqrt(2) - 1)^(4*n+1)} = 2.20409 39255 78752 05766 ...
%e A221073 = 2 + 1/(4 + 1/(1 + 1/(8 + 1/(1 + 1/(32 + 1/(1 + 1/(56 + ...))))))).
%e A221073 We have (sqrt(2) - 1)^3 = 5*sqrt(2) - 7 so product {n >= 0} {1 - sqrt(2)*(5*sqrt(2) - 7)^(4*n+3)}/{1 - sqrt(2)*(5*sqrt(2) - 7)^(4*n+1)} = 1.11117 34981 94843 98511 ... = 1 + 1/(8 + 1/(1 + 1/(196 + 1/(1 + 1/(1968 + 1/(1 + 1/(39200 + ...))))))).
%t A221073 NProduct[( Sqrt[2]*(Sqrt[2] - 1)^(4*n + 3) - 1)/( Sqrt[2]*(Sqrt[2] - 1)^(4*n + 1) - 1), {n, 0, Infinity}, WorkingPrecision -> 200] // ContinuedFraction[#, 37] & (* _Jean-François Alcover_, Mar 06 2013 *)
%t A221073 Join[{2},LinearRecurrence[{0,1,0,6,0,-6,0,-1,0,1},{4,1,8,1,32,1,56,1,196,1},60]] (* _Harvey P. Dale_, Feb 16 2014 *)
%o A221073 (PARI) x='x+O('x^30); Vec((x^10-2*x^8-6*x^6+12*x^4-4*x^3+x^2-4*x-2)/((x-1)*(x+1)*(x^4-2*x^2-1)*(x^4+2*x^2-1))) \\ _G. C. Greubel_, Jul 15 2018
%o A221073 (Magma) m:=25; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!((x^10-2*x^8-6*x^6+12*x^4-4*x^3+x^2-4*x-2)/((x-1)*(x+1)*(x^4-2*x^2-1)*(x^4+2*x^2-1)))); // _G. C. Greubel_, Jul 15 2018
%Y A221073 Cf. A001108, A053141, A174500, A221074 (m = 3), A221075 (m = 4), A221076 (m = 5).
%K A221073 nonn,easy,cofr
%O A221073 0,1
%A A221073 _Peter Bala_, Jan 06 2013
%E A221073 More terms from _Harvey P. Dale_, Feb 16 2014