This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A221076 #24 Feb 13 2024 08:32:15 %S A221076 2,16,1,32,1,320,1,608,1,5776,1,10944,1,103680,1,196416,1,1860496,1, %T A221076 3524576,1,33385280,1,63245984,1,599074576,1,1134903168,1,10749957120, %U A221076 1,20365011072,1,192900153616,1,365435296160,1 %N A221076 Continued fraction expansion of product_{n>=0} (1-sqrt(5)*[sqrt(5)-2]^{4n+3})/(1-sqrt(5)*[sqrt(5)-2]^{4n+1}). %C A221076 Simple continued fraction expansion of product {n >= 0} {1 - sqrt(m)*[sqrt(m) - sqrt(m-1)]^(4*n+3)}/{1 - sqrt(m)*[sqrt(m) - sqrt(m-1)]^(4*n+1)} at m = 5. For other cases see A221073 (m = 2), A221074 (m = 3) and A221075 (m = 4). %C A221076 If we denote the present sequence by [2; 16, 1, c(3), 1, c(4), 1, ...] then for k >= 1 the sequence [1; c(2*k+1), 1, c(2*(2*k+1)), 1, c(3*(2*k+1)), 1, ...] gives the simple continued fraction expansion of product {n >= 0} [1-sqrt(5)*{(sqrt(5)-2)^(2*k+1)}^(4*n+3)]/[1 - sqrt(5)*{(sqrt(5)-2)^(2*k+1)}^(4*n+1)]. An example is given below. %H A221076 Peter Bala, <a href="/A174500/a174500_2.pdf">Some simple continued fraction expansions for an infinite product, Part 1</a> %H A221076 <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (0,1,0,18,0,-18,0,-1,0,1). %F A221076 a(2*n) = 1 for n >= 1. For n >= 1 we have: %F A221076 a(4*n - 3) = (sqrt(5) + 2)^(2*n) + (sqrt(5) - 2)^(2*n) - 2; %F A221076 a(4*n - 1) = 1/sqrt(5)*{(sqrt(5) + 2)^(2*n + 1) + (sqrt(5) - 2)^(2*n + 1)} - 2. %F A221076 a(4*n - 3) = 16*A049863(n) = 4*A132584(n); %F A221076 a(4*n - 1) = 32*A049664(n) = 4*A053606(n). %F A221076 O.g.f.: 2 + x^2/(1 - x^2) + 16*x*(1 + x^2)^2/(1 - 19*x^4 + 19*x^8 - x^12) = 2 + 16*x + x^2 + 32*x^3 + x^4 + 320*x^5 + .... %F A221076 O.g.f.: (x^10-2*x^8-18*x^6+36*x^4-16*x^3+x^2-16*x-2) / ((x-1)*(x+1)*(x^4-4*x^2-1)*(x^4+4*x^2-1)). - _Colin Barker_, Jan 10 2014 %e A221076 Product {n >= 0} {1 - sqrt(5)*(sqrt(5) - 2)^(4*n+3)}/{1 - sqrt(5)*(sqrt(5) - 2)^(4*n+1)} = 2.05892 54859 32105 82744 ... %e A221076 = 2 + 1/(16 + 1/(1 + 1/(32 + 1/(1 + 1/(320 + 1/(1 + 1/(608 + ...))))))). %e A221076 Since (sqrt(5) - 2)^3 = 17*sqrt(5) - 38 we have the following simple continued fraction expansion: %e A221076 product {n >= 0} {1 - sqrt(5)*(17*sqrt(5) - 38)^(4*n+3)}/{1 - sqrt(5)*(17*sqrt(5) - 38)^(4*n+1)} = 1.03030 31892 29728 52318 ... = 1 + 1/(32 + 1/(1 + 1/(5776 + 1/(1 + 1/(196416 + 1/(1 + 1/(33385280 + ...))))))). %t A221076 LinearRecurrence[{0,1,0,18,0,-18,0,-1,0,1},{2,16,1,32,1,320,1,608,1,5776,1},40] (* or *) Join[{2},Riffle[LinearRecurrence[{1,18,-18,-1,1},{16,32,320,608,5776},20],1]] (* _Harvey P. Dale_, Jun 05 2023 *) %Y A221076 Cf. A049664, A049863, A053606, A132584, A174500, A221073 (m = 2), A221074 (m = 3), A221075 (m = 4). %K A221076 nonn,easy,cofr %O A221076 0,1 %A A221076 _Peter Bala_, Jan 06 2013