A221141 Third-order spt function.
0, 0, 1, 7, 28, 85, 217, 497, 1036, 2044, 3787, 6797, 11648, 19558, 31703, 50645, 78674, 120932, 181664, 270600, 395682, 574329, 820834, 1166109, 1634668, 2279242, 3142903, 4312063, 5859616, 7927745, 10635129, 14209328, 18846744, 24900807, 32688145, 42761047
Offset: 1
Keywords
Links
- Jean-François Alcover, Table of n, a(n) for n = 1..50
- F. G. Garvan, Higher-order spt functions, preprint.
- F. G. Garvan, Higher-order spt functions, arXiv:1008.1207 [math.NT], 2010.
- F. G. Garvan, Higher-order spt functions, Adv. Math. 228 (2011), no. 1, 241-265.
Programs
-
Mathematica
om[3, p_List] := Module[{pu, m, f}, pu = Union[p]; m = Length[pu]; f[j_] := Count[p, pu[[j]]]; Binomial[f[1] + 2, 5] + Binomial[f[1] + 1, 3] Sum[ Binomial[f[j] + 1, 2], {j, 2, m}] + f[1] Sum[Binomial[f[j] + 2, 4], {j, 2, m}] + f[1] Sum[Binomial[f[j] + 1, 2] Binomial[f[k] + 1, 2], {j, 2, m}, {k, j + 1, m}]]; spt[3, n_] := Sum[om[3, p], {p, IntegerPartitions[n]}]; Table[spt[3, n], {n, 1, 29}] (* Jean-François Alcover, Mar 30 2020 *)
Extensions
More terms from Jean-François Alcover, Mar 30 2020