This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A221159 #26 Aug 29 2020 07:15:11 %S A221159 1,8,72,712,7624,87496,1067976,13781448,187104200,2661876168, %T A221159 39549629384,611918940616,9834596715464,163824830616008, %U A221159 2823080829871048,50238768569014728,921839901090823112,17416746966515278280,338394913332895863752,6753431112631087835592,138296031340416209103816 %N A221159 a(n) = Sum_{i=0..n} Stirling2(n,i)*2^(3i). %C A221159 The number of ways of putting n labeled balls into a set of bags and then putting the bags into 8 labeled boxes. - _Peter Bala_, Mar 23 2013 %H A221159 Vincenzo Librandi, <a href="/A221159/b221159.txt">Table of n, a(n) for n = 0..200</a> %H A221159 Frank Simon, <a href="https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa-101154">Algebraic Methods for Computing the Reliability of Networks</a>, Dissertation, Doctor Rerum Naturalium (Dr. rer. nat.), Fakultät Mathematik und Naturwissenschaften der Technischen Universität Dresden, 2012. See Table 5.1. %F A221159 E.g.f.: exp(8*(exp(x) - 1)). - _Peter Bala_, Mar 23 2013 %F A221159 a(n) ~ n^n * exp(n/LambertW(n/8)-8-n) / (sqrt(1+LambertW(n/8)) * LambertW(n/8)^n). - _Vaclav Kotesovec_, Mar 12 2014 %F A221159 G.f.: Sum_{j>=0} 8^j*x^j / Product_{k=1..j} (1 - k*x). - _Ilya Gutkovskiy_, Apr 11 2019 %t A221159 Table[BellB[n,8],{n,0,20}] (* _Vaclav Kotesovec_, Mar 12 2014 *) %Y A221159 Cf. A000110, A001861, A078944, A221176, A027710, A144180, A144223, A144263, A189233. %K A221159 nonn %O A221159 0,2 %A A221159 _N. J. A. Sloane_, Jan 04 2013