This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A221174 #46 Sep 02 2024 10:41:47 %S A221174 -4,5,6,17,40,97,234,565,1364,3293,7950,19193,46336,111865,270066, %T A221174 651997,1574060,3800117,9174294,22148705,53471704,129092113,311655930, %U A221174 752403973,1816463876,4385331725,10587127326,25559586377,61706300080,148972186537,359650673154 %N A221174 a(0)=-4, a(1)=5; thereafter a(n) = 2*a(n-1) + a(n-2). %C A221174 From _Greg Dresden_, May 08 2023: (Start) %C A221174 For n >= 3, 2*a(n) is the number of ways to tile this figure of length n-1 with two colors of squares and one color of domino. For n=8, we have here the figure of length n-1=7, and it has 2*a(8) = 2728 different tilings. %C A221174 ._ _ %C A221174 |_|_|_ _ _ _ _ %C A221174 |_|_|_|_|_|_|_| %C A221174 (End) %H A221174 Reinhard Zumkeller, <a href="/A221174/b221174.txt">Table of n, a(n) for n = 0..1000</a> %H A221174 José L. Ramírez, Gustavo N. Rubiano, and Rodrigo de Castro, <a href="http://arxiv.org/abs/1212.1368">A Generalization of the Fibonacci Word Fractal and the Fibonacci Snowflake</a>, arXiv preprint arXiv:1212.1368 [cs.DM], 2012-2014. %H A221174 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (2,1). %F A221174 a(n) = 13*A000129(n) - 4*A000129(n+1). - _R. J. Mathar_, Jan 14 2013 %F A221174 G.f.: -(13*x-4) / (x^2+2*x-1). - _Colin Barker_, Jul 10 2015 %F A221174 a(n) is the numerator of the continued fraction [4, 2, ..., 2, 4] with n-3 2's in the middle. For denominators, see A048654. - _Greg Dresden_ and _Tongjia Rao_, Sep 02 2021 %t A221174 LinearRecurrence[{2, 1}, {-4, 5}, 50] (* _Paolo Xausa_, Sep 02 2024 *) %o A221174 (Haskell) %o A221174 a221174 n = a221174_list !! n %o A221174 a221174_list = -4 : 5 : zipWith (+) %o A221174 (map (* 2) $ tail a221174_list) a221174_list %o A221174 -- _Reinhard Zumkeller_, Jan 04 2013 %o A221174 (PARI) Vec(-(13*x-4)/(x^2+2*x-1) + O(x^50)) \\ _Colin Barker_, Jul 10 2015 %Y A221174 Cf. A000129, A078343, A221172, A221173, A221175. %K A221174 sign,easy %O A221174 0,1 %A A221174 _N. J. A. Sloane_, Jan 04 2013