cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A070932 Possible number of units in a finite (commutative or non-commutative) ring.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 26, 27, 28, 30, 31, 32, 36, 40, 42, 44, 45, 46, 48, 49, 52, 54, 56, 58, 60, 62, 63, 64, 66, 70, 72, 78, 80, 81, 82, 84, 88, 90, 92, 93, 96, 98, 100
Offset: 1

Views

Author

Sharon Sela (sharonsela(AT)hotmail.com), May 24 2002

Keywords

Comments

This is a list of the numbers of units in R where R ranges over all finite commutative or non-commutative rings.
By considering the ring Z_n and the finite fields GF(q) this sequence contains the values of the Euler function phi(n) (A000010) and prime powers - 1 (A181062). By taking direct product of rings, if n and m belong to the sequence then so does m*n.
Eric M. Rains has shown that these rules generate all terms of this sequence. More precisely, he shows this sequence (with 0 removed) is the multiplicative monoid generated by all numbers of the form q^n-q^{n-1} for n >= 1 and q a prime power (see Rains link).
Since the number of units of F_q[X]/(X^n) is q^n - q^(n-1), restricting to finite commutative rings gives the same sequence. A296241, which is a proper supersequence, allows the ring R to be infinite. - Jianing Song, Dec 24 2021

Crossrefs

A000252 is a subsequence.
A282572 is the subsequence of odd terms.
Proper subsequence of A296241.
The main entries concerned with the enumeration of rings are A027623, A037234, A037291, A037289, A038538, A186116.

Programs

  • Mathematica
    max = 100; A000010 = EulerPhi[ Range[2*max]] // Union // Select[#, # <= max &] &; A181062 = Select[ Range[max], Length[ FactorInteger[#]] == 1 &] - 1; FixedPoint[ Select[ Outer[ Times, #, # ] // Flatten // Union, # <= max &] &, Union[A000010, A181062] ] (* Jean-François Alcover, Sep 10 2013 *)
  • PARI
    list(lim)=my(P=1, q, v, u=List()); forprime(p=2, default(primelimit), if(eulerphi(P*=p)>=lim, q=p; break)); v=vecsort(vector(P/q*lim\eulerphi(P/q), k, eulerphi(k)), , 8); v=select(n->n<=lim, v); forprime(p=2, sqrtint(lim\1+1), P=p; while((P*=p) <= lim+1, listput(u, P-1))); v=vecsort(concat(v, Vec(u)), , 8); u=List([0]); while(#u, v=vecsort(concat(v, Vec(u)),,8); u=List(); for(i=3,#v, for(j=i,#v,P=v[i]*v[j]; if(P>lim,break); if(!vecsearch(v, P), listput(u, P))))); v \\ Charles R Greathouse IV, Jan 08 2013

Extensions

Entry revised by N. J. A. Sloane, Jan 06 2013, Jan 08 2013
Definition clarified by Jianing Song, Dec 24 2021

A336488 Values taken by all the Jordan totient functions J_k(m) for k >= 1 and m >= 1.

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 8, 10, 12, 15, 16, 18, 20, 22, 24, 26, 28, 30, 31, 32, 36, 40, 42, 44, 46, 48, 52, 54, 56, 58, 60, 63, 64, 66, 70, 72, 78, 80, 82, 84, 88, 92, 96, 100, 102, 104, 106, 108, 110, 112, 116, 120, 124, 126, 127, 128, 130, 132, 136, 138, 140, 144, 148
Offset: 1

Views

Author

Amiram Eldar, Jul 23 2020

Keywords

Comments

The asymptotic density of this sequence is 0 (Rao and Murty, 1979).
First differs from A221178 at n = 75, since a(75) = J_3(6) = 182 is not a term of A221178.

Crossrefs

Programs

  • Mathematica
    phiQ[m_] := Select[Range[m + 1, 2 m*Product[(1 - 1/(k*Log[k]))^(-1), {k, 2, DivisorSigma[0, m]}]], EulerPhi[#] == m &, 1] != {}; jor[k_, n_] := DivisorSum[n, #^k*MoebiusMu[n/#] &]; jorval[k_, mx_] := jor[k, #] & /@ Range[Floor@Surd[mx*Zeta[k], k]]; mx = 300; Select[Union @ Flatten[{Select[Range[mx], phiQ], jorval[#, mx] & /@ Range[2, Floor[Log2[mx]]]}], # <= mx &] (* using code by Jean-François Alcover at A002202 *)
Showing 1-2 of 2 results.